Biblio
"Moving fast, and breaking things", instead of "being safe and secure", is the credo of the IT industry. However, if we look at the wide societal impact of IT security incidents in the past years, it seems like it is no longer sustainable. Just like in the case of Equifax, people simply forget updates, just like in the case of Maersk, companies do not use sufficient network segmentation. Security certification does not seem to help with this issue. After all, Equifax was IS027001 compliant.In this paper, we take a look at how we handle and (do not) learn from security incidents in IT security. We do this by comparing IT security incidents to early and later aviation safety. We find interesting parallels to early aviation safety, and outline the governance levers that could make the world of IT more secure, which were already successful in making flying the most secure way of transportation.
Certifying security controls is required for information systems that are either federally maintained or maintained by a US government contractor. As described in the NIST SP800-53, certified and accredited information systems are deployed with an acceptable security threat risk. Self-adaptive information systems that allow functional and decision-making changes to be dynamically configured at runtime may violate security controls increasing the risk of security threat to the system. Methods are needed to formalize the process of certification for security controls by expressing and verifying the functional and non-functional requirements to determine what risks are introduced through self-adaptation. We formally express the existence and behavior requirements of the mechanisms needed to guarantee the security controls' effectiveness using audit controls on program example. To reason over the risk of security control compliance given runtime self-adaptations, we use the KIV theorem prover on the functional requirements, extracting the verification concerns and workflow associated with the proof process. We augment the MAPE-K control loop planner with knowledge of the mechanisms that satisfy the existence criteria expressed by the security controls. We compare self-adaptive plans to assess their risk of security control violation prior to plan deployment.