Visible to the public Biblio

Filters: Keyword is cloud federation  [Clear All Filters]
2021-08-02
Magdy, Yousra, Kashkoush, Mona S., Azab, Mohamed, Rizk, Mohamed R. M..  2020.  Anonymous blockchain Based Routing For Moving-target Defense Across Federated Clouds. 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR). :1—7.
Cloud federation is the evolution of modern cloud computing. It provides better resource-sharing, perfect resource-utilization, and load-balancing. However, the heterogeneity of security policies and configurations between cloud service providers makes it hard for users to totally trust them. Further, the severe impact of modern cloud attacks such as cross-side channels on federated environments is a major roadblock against such evolution. Securing users' capsules (Virtual Machines and containers) against cross-side channel attacks is considered as a big challenge to cloud service providers. Moving-target Defense (MtD) by live capsule migration was introduced as an effective mechanism to overcome such challenge. However, researchers noted that even with MtD, migrated capsules can still be tracked via routing information. In this paper, we propose a novel Blockchain-based routing mechanism to enable trace-resistant Moving-target Defence (BMtD) to enable anonymous live cross-cloud migrations of running capsules in federated cloud environments. Exploiting the Vulnerable, Exposed, Attacked, Recovered (VEAR) model, simulation results demonstrated the effectiveness of BMtD in minimizing viral attack dispersion.
2018-12-03
Barreto, Luciano, Scheunemann, Leomar, Fraga, Joni, Siqueira, Frank.  2017.  Secure Storage of User Credentials and Attributes in Federation of Clouds. Proceedings of the Symposium on Applied Computing. :364–369.

The use of cloud computing and cloud federations has been the focus of studies in the last years. Many of these infrastructures delegate user authentication to Identity Providers. Once these services are available through the Internet, concerns about the confidentiality of user credentials and attributes are high. The main focus of this work is the security of the credentials and user attributes in authentication infrastructures, exploring secret sharing techniques and using cloud federations as a base for storing this information.

2018-10-26
Halabi, T., Bellaiche, M., Abusitta, A..  2018.  A Cooperative Game for Online Cloud Federation Formation Based on Security Risk Assessment. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :83–88.

Cloud federations allow Cloud Service Providers (CSPs) to deliver more efficient service performance by interconnecting their Cloud environments and sharing their resources. However, the security of the federated Cloud service could be compromised if the resources are shared with relatively insecure and unreliable CSPs. In this paper, we propose a Cloud federation formation model that considers the security risk levels of CSPs. We start by quantifying the security risk of CSPs according to well defined evaluation criteria related to security risk avoidance and mitigation, then we model the Cloud federation formation process as a hedonic coalitional game with a preference relation that is based on the security risk levels and reputations of CSPs. We propose a federation formation algorithm that enables CSPs to cooperate while considering the security risk introduced to their infrastructures, and refrain from cooperating with undesirable CSPs. According to the stability-based solution concepts that we use to evaluate the game, the model shows that CSPs will be able to form acceptable federations on the fly to service incoming resource provisioning requests whenever required.

2017-12-04
Hwang, T..  2017.  NSF GENI cloud enabled architecture for distributed scientific computing. 2017 IEEE Aerospace Conference. :1–8.

GENI (Global Environment for Network Innovations) is a National Science Foundation (NSF) funded program which provides a virtual laboratory for networking and distributed systems research and education. It is well suited for exploring networks at a scale, thereby promoting innovations in network science, security, services and applications. GENI allows researchers obtain compute resources from locations around the United States, connect compute resources using 100G Internet2 L2 service, install custom software or even custom operating systems on these compute resources, control how network switches in their experiment handle traffic flows, and run their own L3 and above protocols. GENI architecture incorporates cloud federation. With the federation, cloud resources can be federated and/or community of clouds can be formed. The heart of federation is user identity and an ability to “advertise” cloud resources into community including compute, storage, and networking. GENI administrators can carve out what resources are available to the community and hence a portion of GENI resources are reserved for internal consumption. GENI architecture also provides “stitching” of compute and storage resources researchers request. This provides L2 network domain over Internet2's 100G network. And researchers can run their Software Defined Networking (SDN) controllers on the provisioned L2 network domain for a complete control of networking traffic. This capability is useful for large science data transfer (bypassing security devices for high throughput). Renaissance Computing Institute (RENCI), a research institute in the state of North Carolina, has developed ORCA (Open Resource Control Architecture), a GENI control framework. ORCA is a distributed resource orchestration system to serve science experiments. ORCA provides compute resources as virtual machines and as well as baremetals. ORCA based GENI ra- k was designed to serve both High Throughput Computing (HTC) and High Performance Computing (HPC) type of computes. Although, GENI is primarily used in various universities and research entities today, GENI architecture can be leveraged in the commercial, aerospace and government settings. This paper will go over the architecture of GENI and discuss the GENI architecture for scientific computing experiments.

2015-05-01
Kanwal, Ayesha, Masood, Rahat, Shibli, Muhammad Awais.  2014.  Evaluation and Establishment of Trust in Cloud Federation. Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication. :12:1–12:8.

Cloud federation is a future evolution of Cloud computing, where Cloud Service Providers (CSP) collaborate dynamically to share their virtual infrastructure for load balancing and meeting the Quality of Service during the demand spikes. Today, one of the major obstacles in adoption of federation is the lack of trust between Cloud providers participating in federation. In order to ensure the security of critical and sensitive data of customers, it is important to evaluate and establish the trust between Cloud providers, before redirecting the customer's requests from one provider to other provider. We are proposing a trust evaluation model and underlying protocol that will facilitate the cloud providers to evaluate the trustworthiness of each other and hence participate in federation to share their infrastructure in a trusted and reliable way.