Biblio
With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.
In new technological world pervasive computing plays the important role in data computing and communication. The pervasive computing provides the mobile environment for decentralized computational services at anywhere, anytime at any context and location. Pervasive computing is flexible and makes portable devices and computing surrounded us as part of our daily life. Devices like Laptop, Smartphones, PDAs, and any other portable devices can constitute the pervasive environment. These devices in pervasive environments are worldwide and can receive various communications including audio visual services. The users and the system in this pervasive environment face the challenges of user trust, data privacy and user and device node identity. To give the feasible determination for these challenges. This paper aims to propose a dynamic learning in pervasive computing environment refer the challenges proposed efficient security model (ESM) for trustworthy and untrustworthy attackers. ESM model also compared with existing generic models; it also provides better accuracy rate than existing models.
Current implementations of Differential Privacy (DP) focus primarily on the privacy of the data release. The planned thesis will investigate steps towards a user-centric approach of DP in the scope of the Internet-of-Things (IoT) which focuses on data subjects, IoT developers, and data analysts. We will conduct user studies to find out more about the often conflicting interests of the involved parties and the encountered challenges. Furthermore, a technical solution will be developed to assist data subjects and analysts in making better informed decisions. As a result, we expect our contributions to be a step towards the development of usable DP for IoT sensor data.
This paper exploits the possibility of exposing the location of active eavesdropper in commodity passive RFID system. Such active eavesdropper can activate the commodity passive RFID tags to achieve data eavesdropping and jamming. In this paper, we show that these active eavesdroppers can be significantly detrimental to the commodity passive RFID system on RFID data security and system feasibility. We believe that the best way to defeat the active eavesdropper in the commodity passive RFID system is to expose the location of the active eavesdropper and kick it out. To do so, we need to localize the active eavesdropper. However, we cannot extract the channel from the active eavesdropper, since we do not know what the active eavesdropper's transmission and the interference from the tag's backscattered signals. So, we propose an approach to mitigate the tag's interference and cancel out the active eavesdropper's transmission to obtain the subtraction-and-division features, which will be used as the input of the machine learning model to predict the location of active eavesdropper. Our preliminary results show the average accuracy of 96% for predicting the active eavesdropper's position in four grids of the surveillance plane.
Nowadays, the proliferation of smart, communication-enable devices is opening up many new opportunities of pervasive applications. A major requirement of pervasive applications is to be secured. The complexity to secure pervasive systems is to address a end-to-end security level: from the device to the services according to the entire life cycle of devices, applications and platform. In this article, we propose a solution combining both hardware and software elements to secure communications between devices and pervasive platform based on certificates issued from a Public Key Infrastructure. Our solution is implemented and validated with a real device extended by a secure element and our own Public Key Infrastructure.
Recent advances in pervasive computing have caused a rapid growth of the Smart Home market, where a number of otherwise mundane pieces of technology are capable of connecting to the Internet and interacting with other similar devices. However, with the lack of a commonly adopted set of guidelines, several IT companies are producing smart devices with their own proprietary standards, leading to highly heterogeneous Smart Home systems in which the interoperability of the present elements is not always implemented in the most straightforward manner. As such, understanding the cyber risk of these cyber-physical systems beyond the individual devices has become an almost intractable problem. This paper tackles this issue by introducing a Smart Home reference architecture which facilitates security analysis. Being composed by three viewpoints, it gives a high-level description of the various functions and components needed in a domestic IoT device and network. Furthermore, this document demonstrates how the architecture can be used to determine the various attack surfaces of a home automation system from which its key vulnerabilities can be determined.
The Internet of Things (IoT) era envisions billions of interconnected devices capable of providing new interactions between the physical and digital worlds, offering new range of content and services. At the fundamental level, IoT nodes are physical devices that exist in the real world, consisting of networking, sensor, and processing components. Some application examples include mobile and pervasive computing or sensor nets, and require distributed device deployment that feed information into databases for exploitation. While the data can be centralized, there are advantages, such as system resiliency and security to adopting a decentralized architecture that pushes the computation and storage to the network edge and onto IoT devices. However, these devices tend to be much more limited in computation power than traditional racked servers. This research explores using the Cassandra distributed database on IoT-representative device specifications. Experiments conducted on both virtual machines and Raspberry Pi's to simulate IoT devices, examined latency issues with network compression, processing workloads, and various memory and node configurations in laboratory settings. We demonstrate that distributed databases are feasible on Raspberry Pi's as IoT representative devices and show findings that may help in application design.
Cyber-physical-social systems (CPSS), an emerging computing paradigm, have attracted intensive attentions from the research community and industry. We are facing various challenges in designing secure, reliable, and user-satisfied CPSS. In this article, we consider these design issues as a whole and propose a system-level design optimization framework for CPSS design where energy consumption, security-level, and user satisfaction requirements can be fulfilled while satisfying constraints for system reliability. Specifically, we model the constraints (energy efficiency, security, and reliability) as the penalty functions to be incorporated into the corresponding objective functions for the optimization problem. A smart office application is presented to demonstrate the feasibility and effectiveness of our proposed design optimization approach.
In this paper, the design of an event-driven middleware for general purpose services in smart grid (SG) is presented. The main purpose is to provide a peer-to-peer distributed software infrastructure to allow the access of new multiple and authorized actors to SGs information in order to provide new services. To achieve this, the proposed middleware has been designed to be: 1) event-based; 2) reliable; 3) secure from malicious information and communication technology attacks; and 4) to enable hardware independent interoperability between heterogeneous technologies. To demonstrate practical deployment, a numerical case study applied to the whole U.K. distribution network is presented, and the capabilities of the proposed infrastructure are discussed.