Biblio
In recent years, almost all the real-world operations are transferred to cyber world and these market computers connect with each other via Internet. As a result of this, there is an increasing number of security breaches of the networks, whose admins cannot protect their networks from the all types of attacks. Although most of these attacks can be prevented with the use of firewalls, encryption mechanisms, access controls and some password protections mechanisms; due to the emergence of new type of attacks, a dynamic intrusion detection mechanism is always needed in the information security market. To enable the dynamicity of the Intrusion Detection System (IDS), it should be updated by using a modern learning mechanism. Neural Network approach is one of the mostly preferred algorithms for training the system. However, with the increasing power of parallel computing and use of big data for training, as a new concept, deep learning has been used in many of the modern real-world problems. Therefore, in this paper, we have proposed an IDS system which uses GPU powered Deep Learning Algorithms. The experimental results are collected on mostly preferred dataset KDD99 and it showed that use of GPU speed up training time up to 6.48 times depending on the number of the hidden layers and nodes in them. Additionally, we compare the different optimizers to enlighten the researcher to select the best one for their ongoing or future research.
Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.
Conventional wisdom is that the textbook view describes reality, and only bad people (not good people trying to get their jobs done) break the rules. And yet it doesn't, and good people circumvent.
Published in IEEE Security & Privacy, volume 11, issue 5, September - October 2013.
A secure device identifier (DevID) is cryptographically bound to a device and supports authentication of the devices identity. Locally significant identities can be securely associated with an initial manufacturer-provisioned DevID and used in provisioning and authentication protocols toallow a network administrator to establish the trustworthiness of a device and select appropriate policies for transmission and reception of data and control protocols to and from the device.