Visible to the public Biblio

Filters: Keyword is human-centered computing  [Clear All Filters]
2023-03-06
Beasley, Zachariah, Friedman, Alon, Pieg, Les, Rosen, Paul.  2020.  Leveraging Peer Feedback to Improve Visualization Education. 2020 IEEE Pacific Visualization Symposium (PacificVis). :146–155.
Peer review is a widely utilized pedagogical feedback mechanism for engaging students, which has been shown to improve educational outcomes. However, we find limited discussion and empirical measurement of peer review in visualization coursework. In addition to engagement, peer review provides direct and diverse feedback and reinforces recently-learned course concepts through critical evaluation of others’ work. In this paper, we discuss the construction and application of peer review in a computer science visualization course, including: projects that reuse code and visualizations in a feedback-guided, continual improvement process and a peer review rubric to reinforce key course concepts. To measure the effectiveness of the approach, we evaluate student projects, peer review text, and a post-course questionnaire from 3 semesters of mixed undergraduate and graduate courses. The results indicate that course concepts are reinforced with peer review—82% reported learning more because of peer review, and 75% of students recommended continuing it. Finally, we provide a road-map for adapting peer review to other visualization courses to produce more highly engaged students.
ISSN: 2165-8773
2022-06-07
Graham, Martin, Kukla, Robert, Mandrychenko, Oleksii, Hart, Darren, Kennedy, Jessie.  2021.  Developing Visualisations to Enhance an Insider Threat Product: A Case Study. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :47–57.
This paper describes the process of developing data visualisations to enhance a commercial software platform for combating insider threat, whose existing UI, while perfectly functional, was limited in its ability to allow analysts to easily spot the patterns and outliers that visualisation naturally reveals. We describe the design and development process, proceeding from initial tasks/requirements gathering, understanding the platform’s data formats, the rationale behind the visualisations’ design, and then refining the prototype through gathering feedback from representative domain experts who are also current users of the software. Through a number of example scenarios, we show that the visualisation can support the identified tasks and aid analysts in discovering and understanding potentially risky insider activity within a large user base.
2022-06-06
Böhm, Fabian, Englbrecht, Ludwig, Friedl, Sabrina, Pernul, Günther.  2021.  Visual Decision-Support for Live Digital Forensics. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :58–67.

Performing a live digital forensics investigation on a running system is challenging due to the time pressure under which decisions have to be made. Newly proliferating and frequently applied types of malware (e.g., fileless malware) increase the need to conduct digital forensic investigations in real-time. In the course of these investigations, forensic experts are confronted with a wide range of different forensic tools. The decision, which of those are suitable for the current situation, is often based on the cyber forensics experts’ experience. Currently, there is no reliable automated solution to support this decision-making. Therefore, we derive requirements for visually supporting the decision-making process for live forensic investigations and introduce a research prototype that provides visual guidance for cyber forensic experts during a live digital forensics investigation. Our prototype collects relevant core information for live digital forensics and provides visual representations for connections between occurring events, developments over time, and detailed information on specific events. To show the applicability of our approach, we analyze an exemplary use case using the prototype and demonstrate the support through our approach.

2022-02-25
Schreiber, Andreas, Sonnekalb, Tim, Kurnatowski, Lynn von.  2021.  Towards Visual Analytics Dashboards for Provenance-driven Static Application Security Testing. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :42–46.
The use of static code analysis tools for security audits can be time consuming, as the many existing tools focus on different aspects and therefore development teams often use several of these tools to keep code quality high and prevent security issues. Displaying the results of multiple tools, such as code smells and security warnings, in a unified interface can help developers get a better overview and prioritize upcoming work. We present visualizations and a dashboard that interactively display results from static code analysis for “interesting” commits during development. With this, we aim to provide an effective visual analytics tool for code security analysis results.
2022-01-25
Lu, Lu, Duan, Pengshuai, Shen, Xukun, Zhang, Shijin, Feng, Huiyan, Flu, Yong.  2021.  Gaze-Pinch Menu: Performing Multiple Interactions Concurrently in Mixed Reality. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :536—537.
Performing an interaction using gaze and pinch has been certified as an efficient interactive method in Mixed Reality, for such techniques can provide users concise and natural experiences. However, executing a task with individual interactions gradually is inefficient in some application scenarios. In this paper, we propose the Hand-Pinch Menu, which core concept is to reduce unnecessary operations by combining several interactions. Users can continuously perform multiple interactions on a selected object concurrently without changing gestures by using this technique. The user study results show that our Gaze-Pinch Menu can improve operational efficiency effectively.
2021-03-01
Davis, B., Glenski, M., Sealy, W., Arendt, D..  2020.  Measure Utility, Gain Trust: Practical Advice for XAI Researchers. 2020 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). :1–8.
Research into the explanation of machine learning models, i.e., explainable AI (XAI), has seen a commensurate exponential growth alongside deep artificial neural networks throughout the past decade. For historical reasons, explanation and trust have been intertwined. However, the focus on trust is too narrow, and has led the research community astray from tried and true empirical methods that produced more defensible scientific knowledge about people and explanations. To address this, we contribute a practical path forward for researchers in the XAI field. We recommend researchers focus on the utility of machine learning explanations instead of trust. We outline five broad use cases where explanations are useful and, for each, we describe pseudo-experiments that rely on objective empirical measurements and falsifiable hypotheses. We believe that this experimental rigor is necessary to contribute to scientific knowledge in the field of XAI.
2021-02-01
Han, W., Schulz, H.-J..  2020.  Beyond Trust Building — Calibrating Trust in Visual Analytics. 2020 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). :9–15.
Trust is a fundamental factor in how users engage in interactions with Visual Analytics (VA) systems. While the importance of building trust to this end has been pointed out in research, the aspect that trust can also be misplaced is largely ignored in VA so far. This position paper addresses this aspect by putting trust calibration in focus – i.e., the process of aligning the user’s trust with the actual trustworthiness of the VA system. To this end, we present the trust continuum in the context of VA, dissect important trust issues in both VA systems and users, as well as discuss possible approaches that can build and calibrate trust.