Visible to the public Biblio

Found 198 results

Filters: Keyword is data protection  [Clear All Filters]
2022-04-18
Chin, Won Yoon, Chua, Hui Na.  2021.  Using the Theory of Interpersonal Behavior to Predict Information Security Policy Compliance. 2021 Eighth International Conference on eDemocracy eGovernment (ICEDEG). :80–87.

Employees' compliance with information security policies (ISP) which may minimize the information security threats has always been a major concern for organizations. Numerous research and theoretical models had been investigated in the related field of study to identify factors that influence ISP compliance behavior. The study presented in this paper is the first to apply the Theory of Interpersonal Behavior (TIB) for predicting ISP compliance, despite a few studies suggested its strong explanatory power. Taking on the prior results of the literature review, we adopt the TIB and aim to further the theoretical advancement in this field of study. Besides, previous studies had only focused on individuals as well as organizations in which the role of government, from the aspect of its effectiveness in enforcing data protection regulation, so far has not been tested on its influence on individuals' intention to comply with ISP. Hence, we propose an exploratory study to integrate government effectiveness with TIB to explain ISP compliance in a Malaysian context. Our results show a significant influence of government effectiveness in ISP compliance, and the TIB is a promising model as well as posing strong explanatory power in predicting ISP compliance.

2022-04-01
Pokharana, Anchal, Sharma, Samiksha.  2021.  Encryption, File Splitting and File compression Techniques for Data Security in virtualized environment. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :480—485.
Nowadays cloud computing has become the crucial part of IT and most important thing is information security in cloud environment. Range of users can access the facilities and use cloud according to their feasibility. Cloud computing is utilized as safe storage of information but still data security is the biggest concern, for example, secrecy, data accessibility, data integrity is considerable factor for cloud storage. Cloud service providers provide the facility to clients that they can store the data on cloud remotely and access whenever required. Due to this facility, it gets necessary to shield or cover information from unapproved access, hackers or any sort of alteration and malevolent conduct. It is inexpensive approach to store the valuable information and doesn't require any hardware and software to hold the data. it gives excellent work experience but main measure is just security. In this work security strategies have been proposed for cloud data protection, capable to overpower the shortcomings of conventional data protection algorithms and enhancing security using steganography algorithm, encryption decryption techniques, compression and file splitting technique. These techniques are utilized for effective results in data protection, Client can easily access our developed desktop application and share the information in an effective and secured way.
2022-03-22
Shen, Sujin, Sun, Chuang.  2021.  Research on Framework of Smart Grid Data Secure Storage from Blockchain Perspective. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :270—273.
With the development of technology, the structure of power grid becomes more and more complex, and the amount of data collected is also increasing. In the existing smart power grid, the data collected by sensors need to be uploaded and stored to the trusted central node, but the centralized storage method is easy to cause the malicious attack of the central node, resulting in single point failure, data tampering and other security problems. In order to solve these information security problems, this paper proposes a new data security storage framework based on private blockchain. By using the improved raft algorithm, partial decentralized data storage is used instead of traditional centralized storage. It also introduces in detail the working mechanism of the smart grid data security storage framework, including the process of uploading collected data, data verification, and data block consensus. The security analysis shows the effectiveness of the proposed data storage framework.
2022-03-09
Barannik, Vladimir, Shulgin, Sergii, Holovchenko, Serhii, Hurzhiy, Pavlo, Sidchenko, Sergy, Gennady, Pris.  2021.  Method of Hierarchical Protection of Biometric Information. 2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT). :277—281.
This paper contains analysis of methods of increasing the information protection from unauthorized access using a multifactor authentication algorithm; figuring out the best, most efficient and secure method of scanning biometric data; development of a method to store and compare a candidate’s and existisng system user’s information in steganographic space. The urgency of the work is confirmed by the need to increase information security of special infocommunication systems with the help of biometric information and protection of this information from intruders by means of steganographic transformation.
2022-02-24
Pedroza, Gabriel, Muntés-Mulero, Victor, Mart\'ın, Yod Samuel, Mockly, Guillaume.  2021.  A Model-Based Approach to Realize Privacy and Data Protection by Design. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :332–339.
Telecommunications and data are pervasive in almost each aspect of our every-day life and new concerns progressively arise as a result of stakes related to privacy and data protection [1]. Indeed, systems development becomes data-centric leading to an ecosystem where a variety of players intervene (citizens, industry, regulators) and where the policies regarding data usage and utilization are far from consensual. The new General Data Protection Regulation (GDPR) enacted by the European Commission in 2018 has introduced new provisions including principles for lawfulness, fairness, transparency, etc. thus endorsing data subjects with new rights in regards to their personal data. In this context, a growing need for approaches that conceptualize and help engineers to integrate GDPR and privacy provisions at design time becomes paramount. This paper presents a comprehensive approach to support different phases of the design process with special attention to the integration of privacy and data protection principles. Among others, it is a generic model-based approach that can be specialized according to the specifics of different application domains.
Chiu, Chih-Chieh, Tsai, Pang-Wei, Yang, Chu-Sing.  2021.  PIDS: An Essential Personal Information Detection System for Small Business Enterprise. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :01–06.
Since the personal data protection law is on the way of many countries, how to use data mining method to secure sensitive information has become a challenge for enterprises. To make sure every employee follows company's data protection strategy, it may take lots of time and cost to seek and scan thousands of folders and files in user equipment, ensuring that the file contents meet IT security policies. Hence, this paper proposed a lightweight, pattern-based detection system, PIDS, which is expecting to enable an affordable data leakage prevention with essential cost and high efficiency in small business enterprise. For verification and evaluation, PIDS has been deployed on more than 100,000 PCs of collaboration enterprises, and the feedback shows that the system is able to approach its original design functionality for finding violated or sensitive contents efficiently.
2022-02-22
Wink, Tobias, Nochta, Zoltan.  2021.  An Approach for Peer-to-Peer Federated Learning. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :150—157.
We present a novel approach for the collaborative training of neural network models in decentralized federated environments. In the iterative process a group of autonomous peers run multiple training rounds to train a common model. Thereby, participants perform all model training steps locally, such as stochastic gradient descent optimization, using their private, e.g. mission-critical, training datasets. Based on locally updated models, participants can jointly determine a common model by averaging all associated model weights without sharing the actual weight values. For this purpose we introduce a simple n-out-of-n secret sharing schema and an algorithm to calculate average values in a peer-to-peer manner. Our experimental results with deep neural networks on well-known sample datasets prove the generic applicability of the approach, with regard to model quality parameters. Since there is no need to involve a central service provider in model training, the approach can help establish trustworthy collaboration platforms for businesses with high security and data protection requirements.
2022-02-03
García, Kimberly, Zihlmann, Zaira, Mayer, Simon, Tamò-Larrieux, Aurelia, Hooss, Johannes.  2021.  Towards Privacy-Friendly Smart Products. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—7.
Smart products, such as toy robots, must comply with multiple legal requirements of the countries they are sold and used in. Currently, compliance with the legal environment requires manually customizing products for different markets. In this paper, we explore a design approach for smart products that enforces compliance with aspects of the European Union’s data protection principles within a product’s firmware through a toy robot case study. To this end, we present an exchange between computer scientists and legal scholars that identified the relevant data flows, their processing needs, and the implementation decisions that could allow a device to operate while complying with the EU data protection law. By designing a data-minimizing toy robot, we show that the variety, amount, and quality of data that is exposed, processed, and stored outside a user’s premises can be considerably reduced while preserving the device’s functionality. In comparison with a robot designed using a traditional approach, in which 90% of the collected types of information are stored by the data controller or a remote service, our proposed design leads to the mandatory exposure of only 7 out of 15 collected types of information, all of which are legally required by the data controller to demonstrate consent. Moreover, our design is aligned with the Data Privacy Vocabulary, which enables the toy robot to cross geographic borders and seamlessly adjust its data processing activities to the local regulations.
2022-01-10
Jahan, Nusrat, Mahmood, Md. Ashiq.  2021.  Securely Distributing Files in Cloud Environment by Dispensing Asymmetric Key Management System applying Hashing. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1105–1110.
An emerging widely used technology cloud computing which a paddle of computing resources is available for the users. Through the internet-based the resources could be supplied to cloud consumers at their request but it is not directly active management by the user. This application-based software infrastructure can store data on remote serves, which can be accessed through the internet and a user who wants to access data stored in the cloud have to use an internet browser or cloud computing software. Data protection has become one of the significant issues in cloud computing when users must rely on their cloud providers for security purposes. In this article, a system that can embarrass the disclosure of the key for distributing a file that will assure security dispensing asymmetric key and sharing it among the cloud environment and user perform the integrity check themselves rather than using third-party services by using compression or hash function where the hash is created using a hash function and it was not mentioned in the previous paper. After the user receives the data every hash is compared with other hash values to check the differences of the data. The time-consumption of encryption and decryption of the data is calculated and compared with the previous paper and the experiment shows that our calculation took around 80% less time.
2021-07-27
Shere, A. R. K., Nurse, J. R. C., Flechais, I..  2020.  "Security should be there by default": Investigating how journalists perceive and respond to risks from the Internet of Things. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :240—249.
Journalists have long been the targets of both physical and cyber-attacks from well-resourced adversaries. Internet of Things (IoT) devices are arguably a new avenue of threat towards journalists through both targeted and generalised cyber-physical exploitation. This study comprises three parts: First, we interviewed 11 journalists and surveyed 5 further journalists, to determine the extent to which journalists perceive threats through the IoT, particularly via consumer IoT devices. Second, we surveyed 34 cyber security experts to establish if and how lay-people can combat IoT threats. Third, we compared these findings to assess journalists' knowledge of threats, and whether their protective mechanisms would be effective against experts' depictions and predictions of IoT threats. Our results indicate that journalists generally are unaware of IoT-related risks and are not adequately protecting themselves; this considers cases where they possess IoT devices, or where they enter IoT-enabled environments (e.g., at work or home). Expert recommendations spanned both immediate and longterm mitigation methods, including practical actions that are technical and socio-political in nature. However, all proposed individual mitigation methods are likely to be short-term solutions, with 26 of 34 (76.5%) of cyber security experts responding that within the next five years it will not be possible for the public to opt-out of interaction with the IoT.
2021-05-25
[Anonymous].  2020.  B-DCT based Watermarking Algorithm for Patient Data Protection in IoMT. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :1—4.
Internet of Medical Things (IoMT) is the connection between medical devices and information systems to share, collect, process, store, and integrate patient and health data using network technologies. X-Rays, MR, MRI, and CT scans are the most frequently used patient medical image data. These images usually include patient information in one of the corners of the image. In this research work, to protect patient information, a new robust and secure watermarking algorithm developed for a selected region of interest (ROI) of medical images. First ROI selected from the medical image, then selected part divided equal blocks and applied Discrete Cosine Transformation (DCT) algorithm to embed a watermark into the selected coefficients. Several geometric and removal attacks are applied to the watermarked multimedia element such as lossy image compression, the addition of Gaussian noise, denoising, filtering, median filtering, sharpening, contrast enhancement, JPEG compression, and rotation. Experimental results show very promising results in PSNR and similarity ratio (SR) values after blocked DCT (B-DCT) based embedding algorithm against the Discrete Wavelet Transformation (DWT), Least Significant Bits (LSB) and DCT algorithms.
2021-03-29
Khan, S., Jadhav, A., Bharadwaj, I., Rooj, M., Shiravale, S..  2020.  Blockchain and the Identity based Encryption Scheme for High Data Security. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :1005—1008.

Using the blockchain technology to store the privatedocuments of individuals will help make data more reliable and secure, preventing the loss of data and unauthorized access. The Consensus algorithm along with the hash algorithms maintains the integrity of data simultaneously providing authentication and authorization. The paper incorporates the block chain and the Identity Based Encryption management concept. The Identity based Management system allows the encryption of the user's data as well as their identity and thus preventing them from Identity theft and fraud. These two technologies combined will result in a more secure way of storing the data and protecting the privacy of the user.

Erulanova, A., Soltan, G., Baidildina, A., Amangeldina, M., Aset, A..  2020.  Expert System for Assessing the Efficiency of Information Security. 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE). :355—359.

The paper considers an expert system that provides an assessment of the state of information security in authorities and organizations of various forms of ownership. The proposed expert system allows to evaluate the state of compliance with the requirements of both organizational and technical measures to ensure the protection of information, as well as the level of compliance with the requirements of the information protection system in general. The expert assessment method is used as a basic method for assessing the state of information protection. The developed expert system provides a significant reduction in routine operations during the audit of information security. The results of the assessment are presented quite clearly and provide an opportunity for the leadership of the authorities and organizations to make informed decisions to further improve the information protection system.

Maklachkova, V. V., Dokuchaev, V. A., Statev, V. Y..  2020.  Risks Identification in the Exploitation of a Geographically Distributed Cloud Infrastructure for Storing Personal Data. 2020 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1—6.

Throughout the life cycle of any technical project, the enterprise needs to assess the risks associated with its development, commissioning, operation and decommissioning. This article defines the task of researching risks in relation to the operation of a data storage subsystem in the cloud infrastructure of a geographically distributed company and the tools that are required for this. Analysts point out that, compared to 2018, in 2019 there were 3.5 times more cases of confidential information leaks from storages on unprotected (freely accessible due to incorrect configuration) servers in cloud services. The total number of compromised personal data and payment information records increased 5.4 times compared to 2018 and amounted to more than 8.35 billion records. Moreover, the share of leaks of payment information has decreased, but the percentage of leaks of personal data has grown and accounts for almost 90% of all leaks from cloud storage. On average, each unsecured service identified resulted in 33.7 million personal data records being leaked. Leaks are mainly related to misconfiguration of services and stored resources, as well as human factors. These impacts can be minimized by improving the skills of cloud storage administrators and regularly auditing storage. Despite its seeming insecurity, the cloud is a reliable way of storing data. At the same time, leaks are still occurring. According to Kaspersky Lab, every tenth (11%) data leak from the cloud became possible due to the actions of the provider, while a third of all cyber incidents in the cloud (31% in Russia and 33% in the world) were due to gullibility company employees caught up in social engineering techniques. Minimizing the risks associated with the storage of personal data is one of the main tasks when operating a company's cloud infrastructure.

Juyal, S., Sharma, S., Harbola, A., Shukla, A. S..  2020.  Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.

Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.

Gupta, S., Buduru, A. B., Kumaraguru, P..  2020.  imdpGAN: Generating Private and Specific Data with Generative Adversarial Networks. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :64–72.
Generative Adversarial Network (GAN) and its variants have shown promising results in generating synthetic data. However, the issues with GANs are: (i) the learning happens around the training samples and the model often ends up remembering them, consequently, compromising the privacy of individual samples - this becomes a major concern when GANs are applied to training data including personally identifiable information, (ii) the randomness in generated data - there is no control over the specificity of generated samples. To address these issues, we propose imdpGAN-an information maximizing differentially private Generative Adversarial Network. It is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations. With experiments on MNIST dataset, we show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples. We perform binary classification on digit pairs to show the utility versus privacy trade-off. The classification accuracy decreases as we increase privacy levels in the framework. We also experimentally show that the training process of imdpGAN is stable but experience a 10-fold time increase as compared with other GAN frameworks. Finally, we extend imdpGAN framework to CelebA dataset to show how the privacy and learned representations can be used to control the specificity of the output.
Dörr, T., Sandmann, T., Becker, J..  2020.  A Formal Model for the Automatic Configuration of Access Protection Units in MPSoC-Based Embedded Systems. 2020 23rd Euromicro Conference on Digital System Design (DSD). :596—603.

Heterogeneous system-on-chip platforms with multiple processing cores are becoming increasingly common in safety-and security-critical embedded systems. To facilitate a logical isolation of physically connected on-chip components, internal communication links of such platforms are often equipped with dedicated access protection units. When performed manually, however, the configuration of these units can be both time-consuming and error-prone. To resolve this issue, we present a formal model and a corresponding design methodology that allows developers to specify access permissions and information flow requirements for embedded systems in a mostly platform-independent manner. As part of the methodology, the consistency between the permissions and the requirements is automatically verified and an extensible generation framework is used to transform the abstract permission declarations into configuration code for individual access protection units. We present a prototypical implementation of this approach and validate it by generating configuration code for the access protection unit of a commercially available multiprocessor system-on-chip.

2021-03-22
Vimercati, S. de Capitani di, Foresti, S., Paraboschi, S., Samarati, P..  2020.  Enforcing Corporate Governance's Internal Controls and Audit in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :453–461.
More and more organizations are today using the cloud for their business as a quite convenient alternative to in-house solutions for storing, processing, and managing data. Cloud-based solutions are then permeating almost all aspects of business organizations, resulting appealing also for functions that, already in-house, may result sensitive or security critical, and whose enforcement in the cloud requires then particular care. In this paper, we provide an approach for securely relying on cloud-based services for the enforcement of Internal Controls and Audit (ICA) functions for corporate governance. Our approach is based on the use of selective encryption and of tags to provide a level of self-protection to data and for enabling only authorized parties to access data and perform operations on them, providing privacy and integrity guarantees, as well as accountability and non-repudiation.
Xu, P., Chen, L., Jiang, Y., Sun, Q., Chen, H..  2020.  Research on Sensitivity Audit Scheme of Encrypted Data in Power Business. 2020 IEEE International Conference on Energy Internet (ICEI). :6–10.

With the rapid progress of informatization construction in power business, data resource has become the basic strategic resource of the power industry and innovative element in power production. The security protection of data in power business is particularly important in the informatization construction of power business. In order to implement data security protection, transparent encryption is one of the fifteen key technical standards in the Construction Guideline of the Standard Network Data Security System. However, data storage in the encrypted state is bound to affect the security audit of data to a certain extent. Based on this problem, this paper proposes a scheme to audit the sensitivity of the power business data under the protection of encryption to achieve an efficient sensitivity audit of ciphertext data with the premise of not revealing the decryption key or data information. Through a security demonstration, this paper fully proves that this solution is secure under the known plaintext attacks.

Kumar, A..  2020.  A Novel Privacy Preserving HMAC Algorithm Based on Homomorphic Encryption and Auditing for Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :198–202.
Cloud is the perfect way to hold our data every day. Yet the confidentiality of our data is a big concern in the handling of cloud data. Data integrity, authentication and confidentiality are basic security threats in the cloud. Cryptography techniques and Third Party Auditor (TPA) are very useful to impose the integrity and confidentiality of data. In this paper, a system is proposed Enhancing data protection that is housed in cloud computing. The suggested solution uses the RSA algorithm and the AES algorithm to encrypt user data. The hybridization of these two algorithms allows better data protection before it is stored in the cloud. Secure hash algorithm 512 is used to compute the Hash Message Authentication Code (HMAC). A stable audit program is also introduced for Third Party Auditor (TPA) use. The suggested algorithm is applied in python programming and tested in a simple sample format. It is checked that the proposed algorithm functions well to guarantee greater data protection.
2021-03-18
Banday, M. T., Sheikh, S. A..  2020.  Improving Security Control of Text-Based CAPTCHA Challenges using Honeypot and Timestamping. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :704—708.

The resistance to attacks aimed to break CAPTCHA challenges and the effectiveness, efficiency and satisfaction of human users in solving them called usability are the two major concerns while designing CAPTCHA schemes. User-friendliness, universality, and accessibility are related dimensions of usability, which must also be addressed adequately. With recent advances in segmentation and optical character recognition techniques, complex distortions, degradations and transformations are added to text-based CAPTCHA challenges resulting in their reduced usability. The extent of these deformations can be decreased if some additional security mechanism is incorporated in such challenges. This paper proposes an additional security mechanism that can add an extra layer of protection to any text-based CAPTCHA challenge, making it more challenging for bots and scripts that might be used to attack websites and web applications. It proposes the use of hidden text-boxes for user entry of CAPTCHA string which serves as honeypots for bots and automated scripts. The honeypot technique is used to trick bots and automated scripts into filling up input fields which legitimate human users cannot fill in. The paper reports implementation of honeypot technique and results of tests carried out over three months during which form submissions were logged for analysis. The results demonstrated great effectiveness of honeypots technique to improve security control and usability of text-based CAPTCHA challenges.

2021-03-04
Kostromitin, K. I., Dokuchaev, B. N., Kozlov, D. A..  2020.  Analysis of the Most Common Software and Hardware Vulnerabilities in Microprocessor Systems. 2020 International Russian Automation Conference (RusAutoCon). :1031—1036.

The relevance of data protection is related to the intensive informatization of various aspects of society and the need to prevent unauthorized access to them. World spending on ensuring information security (IS) for the current state: expenses in the field of IS today amount to \$81.7 billion. Expenditure forecast by 2020: about \$105 billion [1]. Information protection of military facilities is the most critical in the public sector, in the non-state - financial organizations is one of the leaders in spending on information protection. An example of the importance of IS research is the Trojan encoder WannaCry, which infected hundreds of thousands of computers around the world, attacks are recorded in more than 116 countries. The attack of the encoder of WannaCry (Wana Decryptor) happens through a vulnerability in service Server Message Block (protocol of network access to file systems) of Windows OS. Then, a rootkit (a set of malware) was installed on the infected system, using which the attackers launched an encryption program. Then each vulnerable computer could become infected with another infected device within one local network. Due to these attacks, about \$70,000 was lost (according to data from 18.05.2017) [2]. It is assumed in the presented work, that the software level of information protection is fundamentally insufficient to ensure the stable functioning of critical objects. This is due to the possible hardware implementation of undocumented instructions, discussed later. The complexity of computing systems and the degree of integration of their components are constantly growing. Therefore, monitoring the operation of the computer hardware is necessary to achieve the maximum degree of protection, in particular, data processing methods.

Sun, H., Liu, L., Feng, L., Gu, Y. X..  2014.  Introducing Code Assets of a New White-Box Security Modeling Language. 2014 IEEE 38th International Computer Software and Applications Conference Workshops. :116—121.

This paper argues about a new conceptual modeling language for the White-Box (WB) security analysis. In the WB security domain, an attacker may have access to the inner structure of an application or even the entire binary code. It becomes pretty easy for attackers to inspect, reverse engineer, and tamper the application with the information they steal. The basis of this paper is the 14 patterns developed by a leading provider of software protection technologies and solutions. We provide a part of a new modeling language named i-WBS (White-Box Security) to describe problems of WB security better. The essence of White-Box security problem is code security. We made the new modeling language focus on code more than ever before. In this way, developers who are not security experts can easily understand what they need to really protect.

2021-02-22
Martinelli, F., Marulli, F., Mercaldo, F., Marrone, S., Santone, A..  2020.  Enhanced Privacy and Data Protection using Natural Language Processing and Artificial Intelligence. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.

Artificial Intelligence systems have enabled significant benefits for users and society, but whilst the data for their feeding are always increasing, a side to privacy and security leaks is offered. The severe vulnerabilities to the right to privacy obliged governments to enact specific regulations to ensure privacy preservation in any kind of transaction involving sensitive information. In the case of digital and/or physical documents comprising sensitive information, the right to privacy can be preserved by data obfuscation procedures. The capability of recognizing sensitive information for obfuscation is typically entrusted to the experience of human experts, who are over-whelmed by the ever increasing amount of documents to process. Artificial intelligence could proficiently mitigate the effort of the human officers and speed up processes. Anyway, until enough knowledge won't be available in a machine readable format, automatic and effectively working systems can't be developed. In this work we propose a methodology for transferring and leveraging general knowledge across specific-domain tasks. We built, from scratch, specific-domain knowledge data sets, for training artificial intelligence models supporting human experts in privacy preserving tasks. We exploited a mixture of natural language processing techniques applied to unlabeled domain-specific documents corpora for automatically obtain labeled documents, where sensitive information are recognized and tagged. We performed preliminary tests just over 10.000 documents from the healthcare and justice domains. Human experts supported us during the validation. Results we obtained, estimated in terms of precision, recall and F1-score metrics across these two domains, were promising and encouraged us to further investigations.

2021-02-10
Mishra, P., Gupta, C..  2020.  Cookies in a Cross-site scripting: Type, Utilization, Detection, Protection and Remediation. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1056—1059.
In accordance to the annual report by the Cisco 2018, web applications are exposed to several security vulnerabilities that are exploited by hackers in various ways. It is becoming more and more frequent, specific and sophisticated. Of all the vulnerabilities, more than 40% of attempts are performed via cross-site scripting (XSS). A number of methods have been postulated to examine such vulnerabilities. Therefore, this paper attempted to address an overview of one such vulnerability: the cookies in the XSS. The objective is to present an overview of the cookies, it's type, vulnerability, policies, discovering, protecting and their mitigation via different tools/methods and via cryptography, artificial intelligence techniques etc. While some future issues, directions, challenges and future research challenges were also being discussed.