Biblio
Filters: Keyword is data providers [Clear All Filters]
Decentralized Data Marketplace to Enable Trusted Machine Economy. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE). :246–250.
.
2019. Transacting IoT data must be different in many from traditional approaches in order to build much-needed trust in data marketplaces, trust that will be the key to their sustainability. Data generated internally to an organization is usually not enough to remain competitive, enhance customer experiences, or improve strategic decision-making. In this paper, we propose a decentralized and trustless architecture through the posting of trade records while including the transaction process on distributed ledgers. This approach can efficiently enhance the degree of transparency, as all contract-oriented interactions will be written on-chain. Storage via an end-to-end encrypted message channel allows transmitting and accessing trusted data streams over distributed ledgers regardless of the size or cost of the device, while simultaneously making a verifiable Auth-compliant request to the platform. Furthermore, the platform will complete matching, trading and refunding processes with-out human intervention, and it also protects the rights of data providers and consumers through trading policies which apply revolutionary game theory to the machine economy.
Blockchain Based Provenance Sharing of Scientific Workflows. 2018 IEEE International Conference on Big Data (Big Data). :3814–3820.
.
2018. In a research community, the provenance sharing of scientific workflows can enhance distributed research cooperation, experiment reproducibility verification and experiment repeatedly doing. Considering that scientists in such a community are often in a loose relation and distributed geographically, traditional centralized provenance sharing architectures have shown their disadvantages in poor trustworthiness, reliabilities and efficiency. Additionally, they are also difficult to protect the rights and interests of data providers. All these have been largely hindering the willings of distributed scientists to share their workflow provenance. Considering the big advantages of blockchain in decentralization, trustworthiness and high reliability, an approach to sharing scientific workflow provenance based on blockchain in a research community is proposed. To make the approach more practical, provenance is handled on-chain and original data is delivered off-chain. A kind of block structure to support efficient provenance storing and retrieving is designed, and an algorithm for scientists to search workflow segments from provenance as well as an algorithm for experiments backtracking are provided to enhance the experiment result sharing, save computing resource and time cost by avoiding repeated experiments as far as possible. Analyses show that the approach is efficient and effective.