Visible to the public Biblio

Filters: Keyword is Kerberos protocol  [Clear All Filters]
2019-05-20
Frolov, A. B., Vinnikov, A. M..  2018.  Modeling Cryptographic Protocols Using the Algebraic Processor. 2018 IV International Conference on Information Technologies in Engineering Education (Inforino). :1–5.

We present the IT solution for remote modeling of cryptographic protocols and other cryptographic primitives and a number of education-oriented capabilities based on them. These capabilities are provided at the Department of Mathematical Modeling using the MPEI algebraic processor, and allow remote participants to create automata models of cryptographic protocols, use and manage them in the modeling process. Particular attention is paid to the IT solution for modeling of the private communication and key distribution using the processor combined with the Kerberos protocol. This allows simulation and studying of key distribution protocols functionality on remote computers via the Internet. The importance of studying cryptographic primitives for future IT specialists is emphasized.

2015-05-05
Min Li, Xin Lv, Wei Song, Wenhuan Zhou, Rongzhi Qi, Huaizhi Su.  2014.  A Novel Identity Authentication Scheme of Wireless Mesh Network Based on Improved Kerberos Protocol. Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2014 13th International Symposium on. :190-194.

The traditional Kerberos protocol exists some limitations in achieving clock synchronization and storing key, meanwhile, it is vulnerable from password guessing attack and attacks caused by malicious software. In this paper, a new authentication scheme is proposed for wireless mesh network. By utilizing public key encryption techniques, the security of the proposed scheme is enhanced. Besides, timestamp in the traditional protocol is replaced by random numbers to implementation cost. The analysis shows that the improved authentication protocol is fit for wireless Mesh network, which can make identity authentication more secure and efficient.

2015-05-01
Yoohwan Kim, Juyeon Jo, Shrestha, S..  2014.  A server-based real-time privacy protection scheme against video surveillance by Unmanned Aerial Systems. Unmanned Aircraft Systems (ICUAS), 2014 International Conference on. :684-691.

Unmanned Aerial Systems (UAS) have raised a great concern on privacy recently. A practical method to protect privacy is needed for adopting UAS in civilian airspace. This paper examines the privacy policies, filtering strategies, existing techniques, then proposes a novel method based on the encrypted video stream and the cloud-based privacy servers. In this scheme, all video surveillance images are initially encrypted, then delivered to a privacy server. The privacy server decrypts the video using the shared key with the camera, and filters the image according to the privacy policy specified for the surveyed region. The sanitized video is delivered to the surveillance operator or anyone on the Internet who is authorized. In a larger system composed of multiple cameras and multiple privacy servers, the keys can be distributed using Kerberos protocol. With this method the privacy policy can be changed on demand in real-time and there is no need for a costly on-board processing unit. By utilizing the cloud-based servers, advanced image processing algorithms and new filtering algorithms can be applied immediately without upgrading the camera software. This method is cost-efficient and promotes video sharing among multiple subscribers, thus it can spur wide adoption.