Biblio
Proof of integrity in produced video data by surveillance cameras requires active forensic methods such as signatures, otherwise authenticity and integrity can be comprised and data becomes unusable e. g. for legal evidence. But a simple file- or stream-signature loses its validity when the stream is cut in parts or by separating data and signature. Using the principles of security in distributed systems similar to those of blockchain and distributed ledger technologies (BC/DLT), a chain which consists of the frames of a video which frame hash values will be distributed among a camera sensor network is presented. The backbone of this Framechain within the camera sensor network will be a camera identity concept to ensure accountability, integrity and authenticity according to the extended CIA triad security concept. Modularity by secure sequences, autarky in proof and robustness against natural modulation of data are the key parameters of this new approach. It allows the standalone data and even parts of it to be used as hard evidence.
Video Surveillance plays a pivotal role in today's world. The technologies have been advanced too much when artificial intelligence, machine learning and deep learning pitched into the system. Using above combinations, different systems are in place which helps to differentiate various suspicious behaviors from the live tracking of footages. The most unpredictable one is human behaviour and it is very difficult to find whether it is suspicious or normal. Deep learning approach is used to detect suspicious or normal activity in an academic environment, and which sends an alert message to the corresponding authority, in case of predicting a suspicious activity. Monitoring is often performed through consecutive frames which are extracted from the video. The entire framework is divided into two parts. In the first part, the features are computed from video frames and in second part, based on the obtained features classifier predict the class as suspicious or normal.
Re-drawing the image as a certain artistic style is considered to be a complicated task for computer machine. On the contrary, human can easily master the method to compose and describe the style between different images. In the past, many researchers studying on the deep neural networks had found an appropriate representation of the artistic style using perceptual loss and style reconstruction loss. In the previous works, Gatys et al. proposed an artificial system based on convolutional neural networks that creates artistic images of high perceptual quality. Whereas in terms of running speed, it was relatively time-consuming, thus it cannot apply to video style transfer. Recently, a feed-forward CNN approach has shown the potential of fast style transformation, which is an end-to-end system without hundreds of iteration while transferring. We combined the benefits of both approaches, optimized the feed-forward network and defined time loss function to make it possible to implement the style transfer on video in real time. In contrast to the past method, our method runs in real time with higher resolution while creating competitive visually pleasing and temporally consistent experimental results.
With the rapid development of the Internet of vehicles, there is a huge amount of multimedia data becoming a hidden trouble in the Internet of Things. Therefore, it is necessary to process and store them in real time as a way of big data curation. In this paper, a method of real-time processing and storage based on CDN in vehicle monitoring system is proposed. The MPEG-DASH standard is used to process the multimedia data by dividing them into MPD files and media segments. A real-time monitoring system of vehicle on the basis of the method introduced is designed and implemented.
Cyber-physical systems are an integral component of weapons, sensors and autonomous vehicles, as well as cyber assets directly supporting tactical forces. Mission resilience of tactical networks affects command and control, which is important for successful military operations. Traditional engineering methods for mission assurance will not scale during battlefield operations. Commanders need useful mission resilience metrics to help them evaluate the ability of cyber assets to recover from incidents to fulfill mission essential functions. We develop 6 cyber resilience metrics for tactical network architectures. We also illuminate how psychometric modeling is necessary for future research to identify resilience metrics that are both applicable to the dynamic mission state and meaningful to commanders and planners.
We formulate a tracker which performs incessant decision making in order to track objects where the objects may undergo different challenges such as partial occlusions, moving camera, cluttered background etc. In the process, the agent must make a decision on whether to keep track of the object when it is occluded or has moved out of the frame temporarily based on its prediction from the previous location or to reinitialize the tracker based on the belief that the target has been lost. Instead of the heuristic methods we depend on reward and penalty based training that helps the agent reach an optimal solution via this partially observable Markov decision making (POMDP). Furthermore, we employ deeply learned compositional model to estimate human pose in order to better handle occlusion without needing human inputs. By learning compositionality of human bodies via deep neural network the agent can make better decision on presence of human in a frame or lack thereof under occlusion. We adapt skeleton based part representation and do away with the large spatial state requirement. This especially helps in cases where orientation of the target in focus is unorthodox. Finally we demonstrate that the deep reinforcement learning based training coupled with pose estimation capabilities allows us to train and tag multiple large video datasets much quicker than previous works.
Media streaming has largely dominated the Internet traffic and the trend will keep increasing in the next years. To efficiently distribute the media content, Information-Centric Networking (ICN) has attracted many researchers. Since end users usually obtain content from indeterminate caches in ICN, the publisher cannot reinforce data security and access control depending on the caches. Hence, the ability of self-contained protection is important for the cached contents. Attribute-based encryption (ABE) is considered the preferred solution to achieve this goal. However, the existing ABE schemes usually have problems regarding efficiency. The exponentiation in key generation and pairing operation in decryption respectively increases linearly with the number of attributes involved, which make it costly. In this paper, we propose an efficient key-policy ABE with fast key generation and decryption (FKP-ABE). In the key generation, we get rid of exponentiation and only require multiplications/divisions for each attribute in the access policy. And in the decryption, we reduce the pairing operations to a constant number, no matter how many attributes are used. The efficiency analysis indicates that our scheme has better performance than the existing KP-ABE schemes. Finally, we present an implementation framework that incorporates the proposed FKP-ABE with the ICN architecture.
ASA systems (firewall, IDS, IPS) are probable to become communication bottlenecks in networks with growing network bandwidths. To alleviate this issue, we suggest to use Application-aware mechanism based on Deep Packet Inspection (DPI) to bypass chosen traffic around firewalls. The services of Internet video sharing gained importance and expanded their share of the multimedia market. The Internet video should meet strict service quality (QoS) criteria to make the broadcasting of broadcast television a viable and comparable level of quality. However, since the Internet video relies on packet communication, it is subject to delays, transmission failures, loss of data and bandwidth restrictions that may have a catastrophic effect on the quality of multimedia.
Vehicular Named Data Network (VNDN) uses Named Data Network (NDN) as a communication enabler. The communication is achieved using the content name instead of the host address. NDN integrates content caching at the network level rather than the application level. Hence, the network becomes aware of content caching and delivering. The content caching is a fundamental element in VNDN communication. However, due to the limitations of the cache store, only the most used content should be cached while the less used should be evicted. Traditional caching replacement policies may not work efficiently in VNDN due to the large and diverse exchanged content. To solve this issue, we propose an efficient cache replacement policy that takes the quality of service into consideration. The idea consists of classifying the traffic into different classes, and split the cache store into a set of sub-cache stores according to the defined traffic classes with different storage capacities according to the network requirements. Each content is assigned a popularity-density value that balances the content popularity with its size. Content with the highest popularity-density value is cached while the lowest is evicted. Simulation results prove the efficiency of the proposed solution to enhance the overall network quality of service.
We consider a cloud based multiserver system consisting of a set of replica application servers behind a set of proxy (indirection) servers which interact directly with clients over the Internet. We study a proactive moving-target defense to thwart a DDoS attacker's reconnaissance phase and consequently reduce the attack's impact. The defense is effectively a moving-target (motag) technique in which the proxies dynamically change. The system is evaluated using an AWS prototype of HTTP redirection and by numerical evaluations of an “adversarial” coupon-collector mathematical model, the latter allowing larger-scale extrapolations.