Biblio
The understanding of measured jitter is improved in three ways. First, it is shown that the measured jitter is not only governed by written-in jitter and the reader resolution along the cross-track direction but by remanence noise in the vicinity of transitions and the down-track reader resolution as well. Second, a novel data analysis scheme is introduced that allows for an unambiguous separation of these two contributions. Third, based on data analyses involving the first two learnings and micro-magnetic simulations, we identify and explain the root causes for variations of jitter with write current (WC) (write field), WC overshoot amplitude (write-field rise time), and linear disk velocity measured for heat-assisted magnetic recording.
Transition noise and remanence noise are the two most important types of media noise in heat-assisted magnetic recording. We examine two methods (spatial splitting and principal components analysis) to distinguish them: both techniques show similar trends with respect to applied field and grain pitch (GP). It was also found that PW50can be affected by GP and reader design, but is almost independent of write field and bit length (larger than 50 nm). Interestingly, our simulation shows a linear relationship between jitter and PW50NSRrem, which agrees qualitatively with experimental results.