Visible to the public Biblio

Filters: Keyword is Threshold Signature  [Clear All Filters]
2022-04-26
Makarov, Artyom, Varfolomeev, Alexander A..  2021.  Extended Classification of Signature-only Signature Models. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :2385–2389.

In this paper, we extend the existing classification of signature models by Cao. To do so, we present a new signature classification framework and migrate the original classification to build an easily extendable faceted signature classification. We propose 20 new properties, 7 property families, and 1 signature classification type. With our classification, theoretically, up to 11 541 420 signature classes can be built, which should cover almost all existing signature schemes.

2022-04-13
Chen, Hao, Chen, Lin, Kuang, Xiaoyun, Xu, Aidong, Yang, Yiwei.  2021.  Support Forward Secure Smart Grid Data Deduplication and Deletion Mechanism. 2021 2nd Asia Symposium on Signal Processing (ASSP). :67–76.
With the vigorous development of the Internet and the widespread popularity of smart devices, the amount of data it generates has also increased exponentially, which has also promoted the generation and development of cloud computing and big data. Given cloud computing and big data technology, cloud storage has become a good solution for people to store and manage data at this stage. However, when cloud storage manages and regulates massive amounts of data, its security issues have become increasingly prominent. Aiming at a series of security problems caused by a malicious user's illegal operation of cloud storage and the loss of all data, this paper proposes a threshold signature scheme that is signed by a private key composed of multiple users. When this method performs key operations of cloud storage, multiple people are required to sign, which effectively prevents a small number of malicious users from violating data operations. At the same time, the threshold signature method in this paper uses a double update factor algorithm. Even if the attacker obtains the key information at this stage, he can not calculate the complete key information before and after the time period, thus having the two-way security and greatly improving the security of the data in the cloud storage.
2019-10-08
Fan, Xinxin, Chai, Qi.  2018.  Roll-DPoS: A Randomized Delegated Proof of Stake Scheme for Scalable Blockchain-Based Internet of Things Systems. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :482–484.

Delegated Proof-of-Stake (DPoS) is an efficient, decentralized, and flexible consensus framework available in the blockchain industry. However, applying DPoS to the decentralized Internet of Things (IoT) applications is quite challenging due to the nature of IoT systems such as large-scale deployments and huge amount of data. To address the unique challenge for IoT based blockchain applications, we present Roll-DPoS, a randomized delegated proof of stake algorithm. Roll-DPoS inherits all the advantages of the original DPoS consensus framework and further enhances its capability in terms of decentralization as well as extensibility to complex blockchain architectures. A number of modern cryptographic techniques have been utilized to optimize the consensus process with respect to the computational and communication overhead.