Biblio
In this paper, we extend the existing classification of signature models by Cao. To do so, we present a new signature classification framework and migrate the original classification to build an easily extendable faceted signature classification. We propose 20 new properties, 7 property families, and 1 signature classification type. With our classification, theoretically, up to 11 541 420 signature classes can be built, which should cover almost all existing signature schemes.
Delegated Proof-of-Stake (DPoS) is an efficient, decentralized, and flexible consensus framework available in the blockchain industry. However, applying DPoS to the decentralized Internet of Things (IoT) applications is quite challenging due to the nature of IoT systems such as large-scale deployments and huge amount of data. To address the unique challenge for IoT based blockchain applications, we present Roll-DPoS, a randomized delegated proof of stake algorithm. Roll-DPoS inherits all the advantages of the original DPoS consensus framework and further enhances its capability in terms of decentralization as well as extensibility to complex blockchain architectures. A number of modern cryptographic techniques have been utilized to optimize the consensus process with respect to the computational and communication overhead.