Biblio
A 2D-Compressive Sensing and hyper-chaos based image compression-encryption algorithm is proposed. The 2D image is compressively sampled and encrypted using two measurement matrices. A chaos based measurement matrix construction is employed. The construction of the measurement matrix is controlled by the initial and control parameters of the chaotic system, which are used as the secret key for encryption. The linear measurements of the sparse coefficients of the image are then subjected to a hyper-chaos based diffusion which results in the cipher image. Numerical simulation and security analysis are performed to verify the validity and reliability of the proposed algorithm.
This paper presents a novel Kriged Compressive Sensing (KCS) approach for the reconstruction of underwater acoustic intensity fields sampled by multiple gliders following sawtooth sampling patterns. Blank areas in between the sampling trajectories may cause unsatisfying reconstruction results. The KCS method leverages spatial statistical correlation properties of the acoustic intensity field being sampled to improve the compressive reconstruction process. Virtual data samples generated from a kriging method are inserted into the blank areas. We show that by using the virtual samples along with real samples, the acoustic intensity field can be reconstructed with higher accuracy when coherent spatial patterns exist. Corresponding algorithms are developed for both unweighted and weighted KCS methods. By distinguishing the virtual samples from real samples through weighting, the reconstruction results can be further improved. Simulation results show that both algorithms can improve the reconstruction results according to the PSNR and SSIM metrics. The methods are applied to process the ocean ambient noise data collected by the Sea-Wing acoustic gliders in the South China Sea.
Physical unclonable functions (PUFs) are devices which are easily probed but difficult to predict. Optical PUFs have been discussed within the literature, with traditional optical PUFs typically using spatial light modulators, coherent illumination, and scattering volumes; however, these systems can be large, expensive, and difficult to maintain alignment in practical conditions. We propose and demonstrate a new kind of optical PUF based on computational imaging and compressive sensing to address these challenges with traditional optical PUFs. This work describes the design, simulation, and prototyping of this computational optical PUF (COPUF) that utilizes incoherent polychromatic illumination passing through an additively manufactured refracting optical polymer element. We demonstrate the ability to pass information through a COPUF using a variety of sampling methods, including the use of compressive sensing. The sensitivity of the COPUF system is also explored. We explore non-traditional PUF configurations enabled by the COPUF architecture. The double COPUF system, which employees two serially connected COPUFs, is proposed and analyzed as a means to authenticate and communicate between two entities that have previously agreed to communicate. This configuration enables estimation of a message inversion key without the calculation of individual COPUF inversion keys at any point in the PUF life cycle. Our results show that it is possible to construct inexpensive optical PUFs using computational imaging. This could lead to new uses of PUFs in places where electrical PUFs cannot be utilized effectively, as low cost tags and seals, and potentially as authenticating and communicating devices.
To improve the resilience of state estimation strategy against cyber attacks, the Compressive Sensing (CS) is applied in reconstruction of incomplete measurements for cyber physical systems. First, observability analysis is used to decide the time to run the reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over-completed dictionary by K-Singular Value Decomposition (K-SVD). Besides, due to the irregularity of incomplete measurements, sampling matrix is designed as the measurement matrix. Finally, the simulation experiments on 6-bus power system illustrate that the proposed method achieves the incomplete measurements reconstruction perfectly, which is better than the joint dictionary. When only 29% available measurements are left, the proposed method has generality for four kinds of recovery algorithms.
This paper investigates closed-form expressions to evaluate the performance of the Compressive Sensing (CS) based Energy Detector (ED). The conventional way to approximate the probability density function of the ED test statistic invokes the central limit theorem and considers the decision variable as Gaussian. This approach, however, provides good approximation only if the number of samples is large enough. This is not usually the case in CS framework, where the goal is to keep the sample size low. Moreover, working with a reduced number of measurements is of practical interest for general spectrum sensing in cognitive radio applications, where the sensing time should be sufficiently short since any time spent for sensing cannot be used for data transmission on the detected idle channels. In this paper, we make use of low-complexity approximations based on algebraic transformations of the one-dimensional Gaussian Q-function. More precisely, this paper provides new closed-form expressions for accurate evaluation of the CS-based ED performance as a function of the compressive ratio and the Signal-to-Noise Ratio (SNR). Simulation results demonstrate the increased accuracy of the proposed equations compared to existing works.
Based on the feature analysis of image content, this paper proposes a novel steganalytic method for grayscale images in spatial domain. In this work, we firstly investigates directional lifting wavelet transform (DLWT) as a sparse representation in compressive sensing (CS) domain. Then a block CS (BCS) measurement matrix is designed by using the generalized Gaussian distribution (GGD) model, in which the measurement matrix can be used to sense the DLWT coefficients of images to reflect the feature residual introduced by steganography. Extensive experiments are showed that proposed scheme CS-based is feasible and universal for detecting stegography in spatial domain.
Communication networks can be the targets of organized and distributed attacks such as flooding-type DDOS attack in which malicious users aim to cripple a network server or a network domain. For the attack to have a major effect on the network, malicious users must act in a coordinated and time correlated manner. For instance, the members of the flooding attack increase their message transmission rates rapidly but also synchronously. Even though detection and prevention of the flooding attacks are well studied at network and transport layers, the emergence and wide deployment of new systems such as VoIP (Voice over IP) have turned flooding attacks at the session layer into a new defense challenge. In this study a structured sparsity based group anomaly detection system is proposed that not only can detect synchronized attacks, but also identify the malicious groups from normal users by jointly estimating their members, structure, starting and end points. Although we mainly focus on security on SIP (Session Initiation Protocol) servers/proxies which are widely used for signaling in VoIP systems, the proposed scheme can be easily adapted for any type of communication network system at any layer.