Visible to the public Biblio

Filters: Keyword is Backdoor  [Clear All Filters]
2023-06-09
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
2022-06-09
Javid, Farshad, Lighvan, Mina Zolfy.  2021.  Honeypots Vulnerabilities to Backdoor Attack. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :161–166.
Honeypots are widely used to increase the security of systems and networks, but they only observe the activities that are done against them. A honeypot will not be able to detect an exploit in another system unless it interacts directly with it. In addition to the weakness caused by the normal behavior of honeypots, our research shows that honeypots may succumb to back door attacks. To prove this claim, a backdoor attack is performed on the popular Honeypot system. Experimental results show that the Kfsensor Honeypot is bypassed using a backdoor attack, and network protection is disabled even with the Honeypot enabled.
2021-08-11
Xue, Mingfu, Wu, Zhiyu, He, Can, Wang, Jian, Liu, Weiqiang.  2020.  Active DNN IP Protection: A Novel User Fingerprint Management and DNN Authorization Control Technique. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :975—982.
The training process of deep learning model is costly. As such, deep learning model can be treated as an intellectual property (IP) of the model creator. However, a pirate can illegally copy, redistribute or abuse the model without permission. In recent years, a few Deep Neural Networks (DNN) IP protection works have been proposed. However, most of existing works passively verify the copyright of the model after the piracy occurs, and lack of user identity management, thus cannot provide commercial copyright management functions. In this paper, a novel user fingerprint management and DNN authorization control technique based on backdoor is proposed to provide active DNN IP protection. The proposed method can not only verify the ownership of the model, but can also authenticate and manage the user's unique identity, so as to provide a commercially applicable DNN IP management mechanism. Experimental results on CIFAR-10, CIFAR-100 and Fashion-MNIST datasets show that the proposed method can achieve high detection rate for user authentication (up to 100% in the three datasets). Illegal users with forged fingerprints cannot pass authentication as the detection rates are all 0 % in the three datasets. Model owner can verify his ownership since he can trigger the backdoor with a high confidence. In addition, the accuracy drops are only 0.52%, 1.61 % and -0.65% on CIFAR-10, CIFAR-100 and Fashion-MNIST, respectively, which indicate that the proposed method will not affect the performance of the DNN models. The proposed method is also robust to model fine-tuning and pruning attacks. The detection rates for owner verification on CIFAR-10, CIFAR-100 and Fashion-MNIST are all 100% after model pruning attack, and are 90 %, 83 % and 93 % respectively after model fine-tuning attack, on the premise that the attacker wants to preserve the accuracy of the model.
2019-11-04
Bukasa, Sebanjila K., Lashermes, Ronan, Lanet, Jean-Louis, Leqay, Axel.  2018.  Let's Shock Our IoT's Heart: ARMv7-M Under (Fault) Attacks. Proceedings of the 13th International Conference on Availability, Reliability and Security. :33:1-33:6.

A fault attack is a well-known technique where the behaviour of a chip is voluntarily disturbed by hardware means in order to undermine the security of the information handled by the target. In this paper, we explore how Electromagnetic fault injection (EMFI) can be used to create vulnerabilities in sound software, targeting a Cortex-M3 microcontroller. Several use-cases are shown experimentally: control flow hijacking, buffer overflow (even with the presence of a canary), covert backdoor insertion and Return Oriented Programming can be achieved even if programs are not vulnerable in a software point of view. These results suggest that the protection of any software against vulnerabilities must take hardware into account as well.