Biblio
Filters: Author is Wang, Jian [Clear All Filters]
Partial Reconfiguration for Run-time Memory Faults and Hardware Trojan Attacks Detection. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :173–176.
.
2022. Embedded memory are important components in system-on-chip, which may be crippled by aging and wear faults or Hardware Trojan attacks to compromise run-time security. The current built-in self-test and pre-silicon verification lack efficiency and flexibility to solve this problem. To this end, we address such vulnerabilities by proposing a run-time memory security detecting framework in this paper. The solution builds mainly upon a centralized security detection controller for partially reconfigurable inspection content, and a static memory wrapper to handle access conflicts and buffering testing cells. We show that a field programmable gate array prototype of the proposed framework can pursue 16 memory faults and 3 types Hardware Trojans detection with one reconfigurable partition, whereas saves 12.7% area and 2.9% power overhead compared to a static implementation. This architecture has more scalable capability with little impact on the memory accessing throughput of the original chip system in run-time detection.
Research on image steganography information detection based on support vector machine. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :631—635.
.
2021. With the rapid development of the internet of things and cloud computing, users can instantly transmit a large amount of data to various fields, with the development of communication technology providing convenience for people's life, information security is becoming more and more important. Therefore, it is of great significance to study the technology of image hiding information detection. This paper mainly uses the support vector machine learning algorithm to detect the hidden information of the image, based on a standard image library, randomly selecting images for embedding secret information. According to the bit-plane correlation and the gradient energy change of a single bit-plane after encryption of an image LSB matching algorithm, gradient energy change is selected as characteristic change, and the gradient energy change is innovatively applied to a support vector machine classifier algorithm, and has very good detection effect and good stability on the dense image with the embedding rate of more than 40 percent.
Active DNN IP Protection: A Novel User Fingerprint Management and DNN Authorization Control Technique. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :975—982.
.
2020. The training process of deep learning model is costly. As such, deep learning model can be treated as an intellectual property (IP) of the model creator. However, a pirate can illegally copy, redistribute or abuse the model without permission. In recent years, a few Deep Neural Networks (DNN) IP protection works have been proposed. However, most of existing works passively verify the copyright of the model after the piracy occurs, and lack of user identity management, thus cannot provide commercial copyright management functions. In this paper, a novel user fingerprint management and DNN authorization control technique based on backdoor is proposed to provide active DNN IP protection. The proposed method can not only verify the ownership of the model, but can also authenticate and manage the user's unique identity, so as to provide a commercially applicable DNN IP management mechanism. Experimental results on CIFAR-10, CIFAR-100 and Fashion-MNIST datasets show that the proposed method can achieve high detection rate for user authentication (up to 100% in the three datasets). Illegal users with forged fingerprints cannot pass authentication as the detection rates are all 0 % in the three datasets. Model owner can verify his ownership since he can trigger the backdoor with a high confidence. In addition, the accuracy drops are only 0.52%, 1.61 % and -0.65% on CIFAR-10, CIFAR-100 and Fashion-MNIST, respectively, which indicate that the proposed method will not affect the performance of the DNN models. The proposed method is also robust to model fine-tuning and pruning attacks. The detection rates for owner verification on CIFAR-10, CIFAR-100 and Fashion-MNIST are all 100% after model pruning attack, and are 90 %, 83 % and 93 % respectively after model fine-tuning attack, on the premise that the attacker wants to preserve the accuracy of the model.
Modeling and analyzing privacy-awareness social behavior network. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :7–12.
.
2018. The increasingly networked human society requires that human beings have a clear understanding and control over the structure, nature and behavior of various social networks. There is a tendency towards privacy in the study of network evolutions because privacy disclosure behavior in the network has gradually developed into a serious concern. For this purpose, we extended information theory and proposed a brand-new concept about so-called “habitual privacy” to quantitatively analyze privacy exposure behavior and facilitate privacy computation. We emphasized that habitual privacy is an inherent property of the user and is correlated with their habitual behaviors. The widely approved driving force in recent modeling complex networks is originated from activity. Thus, we propose the privacy-driven model through synthetically considering the activity impact and habitual privacy underlying the decision process. Privacy-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the evolution of network driven by privacy.
Trajectory Protection Scheme Based on Fog Computing and K-anonymity in IoT. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1—6.
.
2019. With the development of cloud computing technology in the Internet of Things (IoT), the trajectory privacy in location-based services (LBSs) has attracted much attention. Most of the existing work adopts point-to-point and centralized models, which will bring a heavy burden to the user and cause performance bottlenecks. Moreover, previous schemes did not consider both online and offline trajectory protection and ignored some hidden background information. Therefore, in this paper, we design a trajectory protection scheme based on fog computing and k-anonymity for real-time trajectory privacy protection in continuous queries and offline trajectory data protection in trajectory publication. Fog computing provides the user with local storage and mobility to ensure physical control, and k-anonymity constructs the cloaking region for each snapshot in terms of time-dependent query probability and transition probability. In this way, two k-anonymity-based dummy generation algorithms are proposed, which achieve the maximum entropy of online and offline trajectory protection. Security analysis and simulation results indicate that our scheme can realize trajectory protection effectively and efficiently.
A Benchmark Suite of Hardware Trojans for On-Chip Networks. IEEE Access. 7:102002—102009.
.
2019. As recently studied, network-on-chip (NoC) suffers growing threats from hardware trojans (HTs), leading to performance degradation or information leakage when it provides communication service in many/multi-core systems. Therefore, defense techniques against NoC HTs experience rapid development in recent years. However, to the best of our knowledge, there are few standard benchmarks developed for the defense techniques evaluation. To address this issue, in this paper, we design a suite of benchmarks which involves multiple NoCs with different HTs, so that researchers can compare various HT defense methods fairly by making use of them. We first briefly introduce the features of target NoC and its infected modules in our benchmarks, and then, detail the design of our NoC HTs in a one-by-one manner. Finally, we evaluate our benchmarks through extensive simulations and report the circuit cost of NoC HTs in terms of area and power consumption, as well as their effects on NoC performance. Besides, comprehensive experiments, including functional testing and side channel analysis are performed to assess the stealthiness of our HTs.
A New Hardware Logic Circuit for Evaluating Multi-Processor Chip Security. 2018 Eighth International Conference on Instrumentation Measurement, Computer, Communication and Control (IMCCC). :1571—1574.
.
2018. NoC (Network-on-Chip) is widely considered and researched by academic communities as a new inter-core interconnection method that replaces the bus. Nowadays, the complexity of on-chip systems is increasing, requiring better communication performance and scalability. Therefore, the optimization of communication performance has become one of the research hotspots. While the NoC is rapidly developing, it is threatened by hardware Trojans inserted during the design or manufacturing processes. This leads to that the attackers can exploit NoC's vulnerability to attack the on-chip systems. To solve the problem, we design and implement a replay-type hardware Trojan inserted into the NoC, aiming to provide a benchmark test set to promote the defense strategies for NoC hardware security. The experiment proves that the power consumption of the designed Trojan accounts for less than one thousandth of the entire NoC power consumption and area. Besides, simulation experiments reveal that this replaytype hardware Trojan can reduce the network throughput.