Biblio
Spams are unsolicited and unnecessary messages which may contain harmful codes or links for activation of malicious viruses and spywares. Increasing popularity of social networks attracts the spammers to perform malicious activities in social networks. So an efficient spam detection method is necessary for social networks. In this paper, feed forward neural network with back propagation based spam detection model is proposed. The quality of the learning process is improved by tuning initial weights of feed forward neural network using proposed enhanced step size firefly algorithm which reduces the time for finding optimal weights during the learning process. The model is applied for twitter dataset and the experimental results show that, the proposed model performs well in terms of accuracy and detection rate and has lower false positive rate.
An abnormal behavior detection algorithm for surveillance is required to correctly identify the targets as being in a normal or chaotic movement. A model is developed here for this purpose. The uniqueness of this algorithm is the use of foreground detection with Gaussian mixture (FGMM) model before passing the video frames to optical flow model using Lucas-Kanade approach. Information of horizontal and vertical displacements and directions associated with each pixel for object of interest is extracted. These features are then fed to feed forward neural network for classification and simulation. The study is being conducted on the real time videos and some synthesized videos. Accuracy of method has been calculated by using the performance parameters for Neural Networks. In comparison of plain optical flow with this model, improved results have been obtained without noise. Classes are correctly identified with an overall performance equal to 3.4e-02 with & error percentage of 2.5.