Visible to the public Biblio

Found 114 results

Filters: Keyword is Neural Network  [Clear All Filters]
2022-03-08
Diao, Weiping.  2021.  Network Security Situation Forecast Model Based on Neural Network Algorithm Development and Verification. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :462—465.

With the rapid development of Internet scale and technology, people pay more and more attention to network security. At present, the general method in the field of network security is to use NSS(Network Security Situation) to describe the security situation of the target network. Because NSSA (Network Security Situation Awareness) has not formed a unified optimal solution in architecture design and algorithm design, many ideas have been put forward continuously, and there is still a broad research space. In this paper, the improved LSTM(long short-term memory) neural network is used to analyze and process NSS data, and effectively utilize the attack logic contained in sequence data. Build NSSF (Network Security Situation Forecast) framework based on NAWL-ILSTM. The framework is to directly output the quantified NSS change curve after processing the input original security situation data. Modular design and dual discrimination engine reduce the complexity of implementation and improve the stability. Simulation results show that the prediction model not only improves the convergence speed of the prediction model, but also greatly reduces the prediction error of the model.

2022-03-02
Liu, Yongchao, Zhu, Qidan.  2021.  Adaptive Neural Network Asymptotic Tracking for Nonstrict-Feedback Switched Nonlinear Systems. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :25–30.
This paper develops an adaptive neural network (NN) asymptotic tracking control scheme for nonstrict-feedback switched nonlinear systems with unknown nonlinearities. The NNs are used to dispose the unknown nonlinearities. Different from the published results, the asymptotic convergence character is achieved based on the bound estimation method. By combining some smooth functions with the adaptive backstepping scheme, the asymptotic tracking control strategy is presented. It is proved that the fabricated scheme can guarantee that the system output can asymptotically follow the desired signal, and also that all signals of the entire system are bounded. The validity of the devised scheme is evaluated by a simulation example.
2022-03-01
Roy, Debaleena, Guha, Tanaya, Sanchez, Victor.  2021.  Graph Based Transforms based on Graph Neural Networks for Predictive Transform Coding. 2021 Data Compression Conference (DCC). :367–367.
This paper introduces the GBT-NN, a novel class of Graph-based Transform within the context of block-based predictive transform coding using intra-prediction. The GBT-NNis constructed by learning a mapping function to map a graph Laplacian representing the covariance matrix of the current block. Our objective of learning such a mapping functionis to design a GBT that performs as well as the KLT without requiring to explicitly com-pute the covariance matrix for each residual block to be transformed. To avoid signallingany additional information required to compute the inverse GBT-NN, we also introduce acoding framework that uses a template-based prediction to predict residuals at the decoder. Evaluation results on several video frames and medical images, in terms of the percentageof preserved energy and mean square error, show that the GBT-NN can outperform the DST and DCT.
Omid Azarkasb, Seyed, Sedighian Kashi, Saeed, Hossein Khasteh, Seyed.  2021.  A Network Intrusion Detection Approach at the Edge of Fog. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–6.
In addition to the feature of real-time analytics, fog computing allows detection nodes to be located at the edges of the network. On the other hand, intrusion detection systems require prompt and accurate attack analysis and detection. These systems must promptly respond appropriately to an event. Increasing the speed of data transfer and response requires less bandwidth in the network, reducing the data sent to the cloud and increasing information security as some of the advantages of using detection nodes at the edges of the network in fog computing. The use of neural networks in the analyzer engine is important for the low consumption of system resources, avoidance of explicit production of detection rules, detection of known deformed attacks, and the ability to manage noise and outlier data. The current paper proposes and implements the architecture of network intrusion detection nodes in fog computing, in addition to presenting the proposed fog network architecture. In the proposed architecture, each node can, in addition to performing intrusion detection operations, observe the nodes around it, find the compromised node or intrusion node, and inform the nodes close to it to disconnect from that node.
2022-02-25
Abutaha, Mohammed, Ababneh, Mohammad, Mahmoud, Khaled, Baddar, Sherenaz Al-Haj.  2021.  URL Phishing Detection using Machine Learning Techniques based on URLs Lexical Analysis. 2021 12th International Conference on Information and Communication Systems (ICICS). :147—152.
Phishing URLs mainly target individuals and/or organizations through social engineering attacks by exploiting the humans' weaknesses in information security awareness. These URLs lure online users to access fake websites, and harvest their confidential information, such as debit/credit card numbers and other sensitive information. In this work, we introduce a phishing detection technique based on URL lexical analysis and machine learning classifiers. The experiments were carried out on a dataset that originally contained 1056937 labeled URLs (phishing and legitimate). This dataset was processed to generate 22 different features that were reduced further to a smaller set using different features reduction techniques. Random Forest, Gradient Boosting, Neural Network and Support Vector Machine (SVM) classifiers were all evaluated, and results show the superiority of SVMs, which achieved the highest accuracy in detecting the analyzed URLs with a rate of 99.89%. Our approach can be incorporated within add-on/middleware features in Internet browsers for alerting online users whenever they try to access a phishing website using only its URL.
2022-02-24
Alabbasi, Abdulrahman, Ganjalizadeh, Milad, Vandikas, Konstantinos, Petrova, Marina.  2021.  On Cascaded Federated Learning for Multi-Tier Predictive Models. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–7.
The performance prediction of user equipment (UE) metrics has many applications in the 5G era and beyond. For instance, throughput prediction can improve carrier selection, adaptive video streaming's quality of experience (QoE), and traffic latency. Many studies suggest distributed learning algorithms (e.g., federated learning (FL)) for this purpose. However, in a multi-tier design, features are measured in different tiers, e.g., UE tier, and gNodeB (gNB) tier. On one hand, neglecting the measurements in one tier results in inaccurate predictions. On the other hand, transmitting the data from one tier to another improves the prediction performance at the expense of increasing network overhead and privacy risks. In this paper, we propose cascaded FL to enhance UE throughput prediction with minimum network footprint and privacy ramifications (if any). The idea is to introduce feedback to conventional FL, in multi-tier architectures. Although we use cascaded FL for UE prediction tasks, the idea is rather general and can be used for many prediction problems in multi-tier architectures, such as cellular networks. We evaluate the performance of cascaded FL by detailed and 3GPP compliant simulations of London's city center. Our simulations show that the proposed cascaded FL can achieve up to 54% improvement over conventional FL in the normalized gain, at the cost of 1.8 MB (without quantization) and no cost with quantization.
2021-12-22
Zhang, Yuyi, Xu, Feiran, Zou, Jingying, Petrosian, Ovanes L., Krinkin, Kirill V..  2021.  XAI Evaluation: Evaluating Black-Box Model Explanations for Prediction. 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT). :13–16.
The results of evaluating explanations of the black-box model for prediction are presented. The XAI evaluation is realized through the different principles and characteristics between black-box model explanations and XAI labels. In the field of high-dimensional prediction, the black-box model represented by neural network and ensemble models can predict complex data sets more accurately than traditional linear regression and white-box models such as the decision tree model. However, an unexplainable characteristic not only hinders developers from debugging but also causes users mistrust. In the XAI field dedicated to ``opening'' the black box model, effective evaluation methods are still being developed. Within the established XAI evaluation framework (MDMC) in this paper, explanation methods for the prediction can be effectively tested, and the identified explanation method with relatively higher quality can improve the accuracy, transparency, and reliability of prediction.
2021-12-21
Mishra, Srinivas, Pradhan, Sateesh Kumar, Rath, Subhendu Kumar.  2021.  Detection of Zero-Day Attacks in Network IDS through High Performance Soft Computing. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1199–1204.
The ever-evolving computers has its implications on the data and information and the threats that they are exposed to. With the exponential growth of internet, the chances of data breach are highly likely as unauthorized and ill minded users find new ways to get access to the data that they can use for their plans. Most of the systems today have well designed measures that examine the information for any abnormal behavior (Zero Day Attacks) compared to what has been seen and experienced over the years. These checks are done based on a predefined identity (signature) of information. This is being termed as Intrusion Detection Systems (IDS). The concept of IDS revolves around validation of data and/or information and detecting unauthorized access attempts with an intention of manipulating data. High Performance Soft Computing (HPSC) aims to internalize cumulative adoption of traditional and modern attempts to breach data security and expose it to high scale damage and altercations. Our effort in this paper is to emphasize on the multifaceted tactic and rationalize important functionalities of IDS available at the disposal of HPSC.
2021-11-08
Singh, Juhi, Sharmila, V Ceronmani.  2020.  Detecting Trojan Attacks on Deep Neural Networks. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
Machine learning and Artificial Intelligent techniques are the most used techniques. It gives opportunity to online sharing market where sharing and adopting model is being popular. It gives attackers many new opportunities. Deep neural network is the most used approached for artificial techniques. In this paper we are presenting a Proof of Concept method to detect Trojan attacks on the Deep Neural Network. Deploying trojan models can be dangerous in normal human lives (Application like Automated vehicle). First inverse the neuron network to create general trojan triggers, and then retrain the model with external datasets to inject Trojan trigger to the model. The malicious behaviors are only activated with the trojan trigger Input. In attack, original datasets are not required to train the model. In practice, usually datasets are not shared due to privacy or copyright concerns. We use five different applications to demonstrate the attack, and perform an analysis on the factors that affect the attack. The behavior of a trojan modification can be triggered without affecting the test accuracy for normal input datasets. After generating the trojan trigger and performing an attack. It's applying SHAP as defense against such attacks. SHAP is known for its unique explanation for model predictions.
2021-09-30
Desnitsky, Vasily A., Kotenko, Igor V., Parashchuk, Igor B..  2020.  Neural Network Based Classification of Attacks on Wireless Sensor Networks. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :284–287.
The paper proposes a method for solving problems of classifying multi-step attacks on wireless sensor networks in the conditions of uncertainty (incompleteness and inconsistency) of the observed signs of attacks. The method aims to eliminate the uncertainty of classification of attacks on networks of this class one the base of the use of neural network approaches to the processing of incomplete and contradictory knowledge on possible attack characteristics. It allows increasing objectivity (accuracy and reliability) of information security monitoring in modern software and hardware systems and Internet of Things networks that actively exploit advantages of wireless sensor networks.
2021-09-21
Vaseer, Gurveen.  2020.  Multi-Attack Detection Using Forensics and Neural Network Based Prevention for Secure MANETs. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
This paper presents Forensic methods for detection and prevention of multiple attacks along with neural networks like Denial-of-Service (DoS), probe, vampire, and User-to-Root (U2R) attacks, in a Mobile Ad hoc Network (MANET). We accomplish attacker(s) detection and prevention percentage upto 99% in varied node density scenarios 50/100/150.
bin Asad, Ashub, Mansur, Raiyan, Zawad, Safir, Evan, Nahian, Hossain, Muhammad Iqbal.  2020.  Analysis of Malware Prediction Based on Infection Rate Using Machine Learning Techniques. 2020 IEEE Region 10 Symposium (TENSYMP). :706–709.
In this modern, technological age, the internet has been adopted by the masses. And with it, the danger of malicious attacks by cybercriminals have increased. These attacks are done via Malware, and have resulted in billions of dollars of financial damage. This makes the prevention of malicious attacks an essential part of the battle against cybercrime. In this paper, we are applying machine learning algorithms to predict the malware infection rates of computers based on its features. We are using supervised machine learning algorithms and gradient boosting algorithms. We have collected a publicly available dataset, which was divided into two parts, one being the training set, and the other will be the testing set. After conducting four different experiments using the aforementioned algorithms, it has been discovered that LightGBM is the best model with an AUC Score of 0.73926.
Brzezinski Meyer, Maria Laura, Labit, Yann.  2020.  Combining Machine Learning and Behavior Analysis Techniques for Network Security. 2020 International Conference on Information Networking (ICOIN). :580–583.
Network traffic attacks are increasingly common and varied, this is a big problem especially when the target network is centralized. The creation of IDS (Intrusion Detection Systems) capable of detecting various types of attacks is necessary. Machine learning algorithms are widely used in the classification of data, bringing a good result in the area of computer networks. In addition, the analysis of entropy and distance between data sets are also very effective in detecting anomalies. However, each technique has its limitations, so this work aims to study their combination in order to improve their performance and create a new intrusion detection system capable of well detect some of the most common attacks. Reliability indices will be used as metrics to the combination decision and they will be updated in each new dataset according to the decision made earlier.
2021-08-05
Ramasubramanian, Muthukumaran, Muhammad, Hassan, Gurung, Iksha, Maskey, Manil, Ramachandran, Rahul.  2020.  ES2Vec: Earth Science Metadata Keyword Assignment using Domain-Specific Word Embeddings. 2020 SoutheastCon. :1—6.
Earth science metadata keyword assignment is a challenging problem. Dataset curators select appropriate keywords from the Global Change Master Directory (GCMD) set of keywords. The keywords are integral part of search and discovery of these datasets. Hence, selection of keywords are crucial in increasing the discoverability of datasets. Utilizing machine learning techniques, we provide users with automated keyword suggestions as an improved approach to complement manual selection. We trained a machine learning model that leverages the semantic embedding ability of Word2Vec models to process abstracts and suggest relevant keywords. A user interface tool we built to assist data curators in assignment of such keywords is also described.
2021-05-20
Mheisn, Alaa, Shurman, Mohammad, Al-Ma’aytah, Abdallah.  2020.  WSNB: Wearable Sensors with Neural Networks Located in a Base Station for IoT Environment. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
The Internet of Things (IoT) is a system paradigm that recently introduced, which includes different smart devices and applications, especially, in smart cities, e.g.; manufacturing, homes, and offices. To improve their awareness capabilities, it is attractive to add more sensors to their framework. In this paper, we propose adding a new sensor as a wearable sensor connected wirelessly with a neural network located on the base station (WSNB). WSNB enables the added sensor to refine their labels through active learning. The new sensors achieve an average accuracy of 93.81%, which is 4.5% higher than the existing method, removing human support and increasing the life cycle for the sensors by using neural network approach in the base station.
2021-05-13
Li, Yizhi.  2020.  Research on Application of Convolutional Neural Network in Intrusion Detection. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA). :720–723.
At present, our life is almost inseparable from the network, the network provides a lot of convenience for our life. However, a variety of network security incidents occur very frequently. In recent years, with the continuous development of neural network technology, more and more researchers have applied neural network to intrusion detection, which has developed into a new research direction in intrusion detection. As long as the neural network is provided with input data including network data packets, through the process of self-learning, the neural network can separate abnormal data features and effectively detect abnormal data. Therefore, the article innovatively proposes an intrusion detection method based on deep convolutional neural networks (CNN), which is used to test on public data sets. The results show that the model has a higher accuracy rate and a lower false negative rate than traditional intrusion detection methods.
2021-03-30
Ashiku, L., Dagli, C..  2020.  Agent Based Cybersecurity Model for Business Entity Risk Assessment. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1—6.

Computer networks and surging advancements of innovative information technology construct a critical infrastructure for network transactions of business entities. Information exchange and data access though such infrastructure is scrutinized by adversaries for vulnerabilities that lead to cyber-attacks. This paper presents an agent-based system modelling to conceptualize and extract explicit and latent structure of the complex enterprise systems as well as human interactions within the system to determine common vulnerabilities of the entity. The model captures emergent behavior resulting from interactions of multiple network agents including the number of workstations, regular, administrator and third-party users, external and internal attacks, defense mechanisms for the network setting, and many other parameters. A risk-based approach to modelling cybersecurity of a business entity is utilized to derive the rate of attacks. A neural network model will generalize the type of attack based on network traffic features allowing dynamic state changes. Rules of engagement to generate self-organizing behavior will be leveraged to appoint a defense mechanism suitable for the attack-state of the model. The effectiveness of the model will be depicted by time-state chart that shows the number of affected assets for the different types of attacks triggered by the entity risk and the time it takes to revert into normal state. The model will also associate a relevant cost per incident occurrence that derives the need for enhancement of security solutions.

2021-03-09
Rojas-Dueñas, G., Riba, J., Kahalerras, K., Moreno-Eguilaz, M., Kadechkar, A., Gomez-Pau, A..  2020.  Black-Box Modelling of a DC-DC Buck Converter Based on a Recurrent Neural Network. 2020 IEEE International Conference on Industrial Technology (ICIT). :456–461.
Artificial neural networks allow the identification of black-box models. This paper proposes a method aimed at replicating the static and dynamic behavior of a DC-DC power converter based on a recurrent nonlinear autoregressive exogenous neural network. The method proposed in this work applies an algorithm that trains a neural network based on the inputs and outputs (currents and voltages) of a Buck converter. The approach is validated by means of simulated data of a realistic nonsynchronous Buck converter model programmed in Simulink and by means of experimental results. The predictions made by the neural network are compared to the actual outputs of the system, to determine the accuracy of the method, thus validating the proposed approach. Both simulation and experimental results show the feasibility and accuracy of the proposed black-box approach.
MATSUNAGA, Y., AOKI, N., DOBASHI, Y., KOJIMA, T..  2020.  A Black Box Modeling Technique for Distortion Stomp Boxes Using LSTM Neural Networks. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :653–656.
This paper describes an experimental result of modeling stomp boxes of the distortion effect based on a machine learning approach. Our proposed technique models a distortion stomp box as a neural network consisting of LSTM layers. In this approach, the neural network is employed for learning the nonlinear behavior of the distortion stomp boxes. All the parameters for replicating the distortion sound are estimated through its training process using the input and output signals obtained from some commercial stomp boxes. The experimental result indicates that the proposed technique may have a certain appropriateness to replicate the distortion sound by using the well-trained neural networks.
Muñoz, C. M. Blanco, Cruz, F. Gómez, Valero, J. S. Jimenez.  2020.  Software architecture for the application of facial recognition techniques through IoT devices. 2020 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1–5.

The facial recognition time by time takes more importance, due to the extend kind of applications it has, but it is still challenging when faces big variations in the characteristics of the biometric data used in the process and especially referring to the transportation of information through the internet in the internet of things context. Based on the systematic review and rigorous study that supports the extraction of the most relevant information on this topic [1], a software architecture proposal which contains basic security requirements necessary for the treatment of the data involved in the application of facial recognition techniques, oriented to an IoT environment was generated. Concluding that the security and privacy considerations of the information registered in IoT devices represent a challenge and it is a priority to be able to guarantee that the data circulating on the network are only accessible to the user that was designed for this.

2021-03-04
Nugraha, B., Nambiar, A., Bauschert, T..  2020.  Performance Evaluation of Botnet Detection using Deep Learning Techniques. 2020 11th International Conference on Network of the Future (NoF). :141—149.

Botnets are one of the major threats on the Internet. They are used for malicious activities to compromise the basic network security goals, namely Confidentiality, Integrity, and Availability. For reliable botnet detection and defense, deep learning-based approaches were recently proposed. In this paper, four different deep learning models, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), hybrid CNN-LSTM, and Multi-layer Perception (MLP) are applied for botnet detection and simulation studies are carried out using the CTU-13 botnet traffic dataset. We use several performance metrics such as accuracy, sensitivity, specificity, precision, and F1 score to evaluate the performance of each model on classifying both known and unknown (zero-day) botnet traffic patterns. The results show that our deep learning models can accurately and reliably detect both known and unknown botnet traffic, and show better performance than other deep learning models.

Carlini, N., Farid, H..  2020.  Evading Deepfake-Image Detectors with White- and Black-Box Attacks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2804—2813.

It is now possible to synthesize highly realistic images of people who do not exist. Such content has, for example, been implicated in the creation of fraudulent socialmedia profiles responsible for dis-information campaigns. Significant efforts are, therefore, being deployed to detect synthetically-generated content. One popular forensic approach trains a neural network to distinguish real from synthetic content.We show that such forensic classifiers are vulnerable to a range of attacks that reduce the classifier to near- 0% accuracy. We develop five attack case studies on a state- of-the-art classifier that achieves an area under the ROC curve (AUC) of 0.95 on almost all existing image generators, when only trained on one generator. With full access to the classifier, we can flip the lowest bit of each pixel in an image to reduce the classifier's AUC to 0.0005; perturb 1% of the image area to reduce the classifier's AUC to 0.08; or add a single noise pattern in the synthesizer's latent space to reduce the classifier's AUC to 0.17. We also develop a black-box attack that, with no access to the target classifier, reduces the AUC to 0.22. These attacks reveal significant vulnerabilities of certain image-forensic classifiers.

2021-02-23
Al-Emadi, S., Al-Mohannadi, A., Al-Senaid, F..  2020.  Using Deep Learning Techniques for Network Intrusion Detection. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :171—176.
In recent years, there has been a significant increase in network intrusion attacks which raises a great concern from the privacy and security aspects. Due to the advancement of the technology, cyber-security attacks are becoming very complex such that the current detection systems are not sufficient enough to address this issue. Therefore, an implementation of an intelligent and effective network intrusion detection system would be crucial to solve this problem. In this paper, we use deep learning techniques, namely, Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to design an intelligent detection system which is able to detect different network intrusions. Additionally, we evaluate the performance of the proposed solution using different evaluation matrices and we present a comparison between the results of our proposed solution to find the best model for the network intrusion detection system.
Liu, J., Xiao, K., Luo, L., Li, Y., Chen, L..  2020.  An intrusion detection system integrating network-level intrusion detection and host-level intrusion detection. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :122—129.
With the rapid development of Internet, the issue of cyber security has increasingly gained more attention. An intrusion Detection System (IDS) is an effective technique to defend cyber-attacks and reduce security losses. However, the challenge of IDS lies in the diversity of cyber-attackers and the frequently-changing data requiring a flexible and efficient solution. To address this problem, machine learning approaches are being applied in the IDS field. In this paper, we propose an efficient scalable neural-network-based hybrid IDS framework with the combination of Host-level IDS (HIDS) and Network-level IDS (NIDS). We applied the autoencoders (AE) to NIDS and designed HIDS using word embedding and convolutional neural network. To evaluate the IDS, many experiments are performed on the public datasets NSL-KDD and ADFA. It can detect many attacks and reduce the security risk with high efficiency and excellent scalability.
2021-02-22
Haile, J., Havens, S..  2020.  Identifying Ubiquitious Third-Party Libraries in Compiled Executables Using Annotated and Translated Disassembled Code with Supervised Machine Learning. 2020 IEEE Security and Privacy Workshops (SPW). :157–162.
The size and complexity of the software ecosystem is a major challenge for vendors, asset owners and cybersecurity professionals who need to understand the security posture of these systems. Annotated and Translated Disassembled Code is a graph based datastore designed to organize firmware and software analysis data across builds, packages and systems, providing a highly scalable platform enabling automated binary software analysis tasks including corpora construction and storage for machine learning. This paper describes an approach for the identification of ubiquitous third-party libraries in firmware and software using Annotated and Translated Disassembled Code and supervised machine learning. Annotated and Translated Disassembled Code provide matched libraries, function names and addresses of previously unidentified code in software as it is being automatically analyzed. This data can be ingested by other software analysis tools to improve accuracy and save time. Defenders can add the identified libraries to their vulnerability searches and add effective detection and mitigation into their operating environment.