Visible to the public Biblio

Filters: Keyword is video processing  [Clear All Filters]
2021-08-17
Jin, Kun, Liu, Chaoyue, Xia, Cathy.  2020.  OTDA: a Unsupervised Optimal Transport framework with Discriminant Analysis for Keystroke Inference. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.
Keystroke Inference has been a hot topic since it poses a severe threat to our privacy from typing. Existing learning-based Keystroke Inference suffers the domain adaptation problem because the training data (from attacker) and the test data (from victim) are generally collected in different environments. Recently, Optimal Transport (OT) is applied to address this problem, but suffers the “ground metric” limitation. In this work, we propose a novel method, OTDA, by incorporating Discriminant Analysis into OT through an iterative learning process to address the ground metric limitation. By embedding OTDA into a vibration-based Keystroke Inference platform, we conduct extensive studies about domain adaptation with different factors, such as people, keyboard position, etc.. Our experiment results show that OTDA can achieve significant performance improvement on classification accuracy, i.e., outperforming baseline by 15% to 30%, state-of-the-art OT and other domain adaptation methods by 10% to 20%.
2021-01-11
Mihanpour, A., Rashti, M. J., Alavi, S. E..  2020.  Human Action Recognition in Video Using DB-LSTM and ResNet. 2020 6th International Conference on Web Research (ICWR). :133—138.

Human action recognition in video is one of the most widely applied topics in the field of image and video processing, with many applications in surveillance (security, sports, etc.), activity detection, video-content-based monitoring, man-machine interaction, and health/disability care. Action recognition is a complex process that faces several challenges such as occlusion, camera movement, viewpoint move, background clutter, and brightness variation. In this study, we propose a novel human action recognition method using convolutional neural networks (CNN) and deep bidirectional LSTM (DB-LSTM) networks, using only raw video frames. First, deep features are extracted from video frames using a pre-trained CNN architecture called ResNet152. The sequential information of the frames is then learned using the DB-LSTM network, where multiple layers are stacked together in both forward and backward passes of DB-LSTM, to increase depth. The evaluation results of the proposed method using PyTorch, compared to the state-of-the-art methods, show a considerable increase in the efficiency of action recognition on the UCF 101 dataset, reaching 95% recognition accuracy. The choice of the CNN architecture, proper tuning of input parameters, and techniques such as data augmentation contribute to the accuracy boost in this study.

2020-07-03
Bashir, Muzammil, Rundensteiner, Elke A., Ahsan, Ramoza.  2019.  A deep learning approach to trespassing detection using video surveillance data. 2019 IEEE International Conference on Big Data (Big Data). :3535—3544.
Railroad trespassing is a dangerous activity with significant security and safety risks. However, regular patrolling of potential trespassing sites is infeasible due to exceedingly high resource demands and personnel costs. This raises the need to design automated trespass detection and early warning prediction techniques leveraging state-of-the-art machine learning. To meet this need, we propose a novel framework for Automated Railroad Trespassing detection System using video surveillance data called ARTS. As the core of our solution, we adopt a CNN-based deep learning architecture capable of video processing. However, these deep learning-based methods, while effective, are known to be computationally expensive and time consuming, especially when applied to a large volume of surveillance data. Leveraging the sparsity of railroad trespassing activity, ARTS corresponds to a dual-stage deep learning architecture composed of an inexpensive pre-filtering stage for activity detection, followed by a high fidelity trespass classification stage employing deep neural network. The resulting dual-stage ARTS architecture represents a flexible solution capable of trading-off accuracy with computational time. We demonstrate the efficacy of our approach on public domain surveillance data achieving 0.87 f1 score while keeping up with the enormous video volume, achieving a practical time and accuracy trade-off.
2019-08-12
Benzer, R., Yildiz, M. C..  2018.  YOLO Approach in Digital Object Definition in Military Systems. 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT). :35–37.

Today, as surveillance systems are widely used for indoor and outdoor monitoring applications, there is a growing interest in real-time generation detection and there are many different applications for real-time generation detection and analysis. Two-dimensional videos; It is used in multimedia content-based indexing, information acquisition, visual surveillance and distributed cross-camera surveillance systems, human tracking, traffic monitoring and similar applications. It is of great importance for the development of systems for national security by following a moving target within the scope of military applications. In this research, a more efficient solution is proposed in addition to the existing methods. Therefore, we present YOLO, a new approach to object detection for military applications.

2018-11-19
Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G..  2017.  Coherent Online Video Style Transfer. 2017 IEEE International Conference on Computer Vision (ICCV). :1114–1123.

Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.

2015-05-01
Yueguo Zhang, Lili Dong, Shenghong Li, Jianhua Li.  2014.  Abnormal crowd behavior detection using interest points. Broadband Multimedia Systems and Broadcasting (BMSB), 2014 IEEE International Symposium on. :1-4.

Abnormal crowd behavior detection is an important research issue in video processing and computer vision. In this paper we introduce a novel method to detect abnormal crowd behaviors in video surveillance based on interest points. A complex network-based algorithm is used to detect interest points and extract the global texture features in scenarios. The performance of the proposed method is evaluated on publicly available datasets. We present a detailed analysis of the characteristics of the crowd behavior in different density crowd scenes. The analysis of crowd behavior features and simulation results are also demonstrated to illustrate the effectiveness of our proposed method.