Visible to the public Biblio

Filters: Keyword is telecommunication network topology  [Clear All Filters]
2015-05-06
Stephens, B., Cox, A.L., Singla, A., Carter, J., Dixon, C., Felter, W..  2014.  Practical DCB for improved data center networks. INFOCOM, 2014 Proceedings IEEE. :1824-1832.

Storage area networking is driving commodity data center switches to support lossless Ethernet (DCB). Unfortunately, to enable DCB for all traffic on arbitrary network topologies, we must address several problems that can arise in lossless networks, e.g., large buffering delays, unfairness, head of line blocking, and deadlock. We propose TCP-Bolt, a TCP variant that not only addresses the first three problems but reduces flow completion times by as much as 70%. We also introduce a simple, practical deadlock-free routing scheme that eliminates deadlock while achieving aggregate network throughput within 15% of ECMP routing. This small compromise in potential routing capacity is well worth the gains in flow completion time. We note that our results on deadlock-free routing are also of independent interest to the storage area networking community. Further, as our hardware testbed illustrates, these gains are achievable today, without hardware changes to switches or NICs.

Desai, N.N., Diwanji, H., Shah, J.S..  2014.  A temporal packet marking detection scheme against MIRA attack in MANET. Engineering and Computational Sciences (RAECS), 2014 Recent Advances in. :1-5.

Mobile Ad-hoc Network is highly susceptible towards the security attacks due to its dynamic topology, resource constraint, energy constraint operations, limited physical security and lack of infrastructure. Misleading routing attack (MIRA) in MANET intend to delay packet to its fullest in order to generate time outs at the source as packets will not reach in time. Its main objective is to generate delay and increase network overhead. It is a variation to the sinkhole attack. In this paper, we have proposed a detection scheme to detect the malicious nodes at route discovery as well as at packet transmissions. The simulation results of MIRA attack indicate that though delay is increased by 91.30% but throughput is not affected which indicates that misleading routing attack is difficult to detect. The proposed detection scheme when applied to misleading routing attack suggests a significant decrease in delay.

Abdallah, W., Boudriga, N., Daehee Kim, Sunshin An.  2014.  An efficient and scalable key management mechanism for wireless sensor networks. Advanced Communication Technology (ICACT), 2014 16th International Conference on. :687-692.

A major issue to secure wireless sensor networks is key distribution. Current key distribution schemes are not fully adapted to the tiny, low-cost, and fragile sensors with limited computation capability, reduced memory size, and battery-based power supply. This paper investigates the design of an efficient key distribution and management scheme for wireless sensor networks. The proposed scheme can ensure the generation and distribution of different encryption keys intended to secure individual and group communications. This is performed based on elliptic curve public key encryption using Diffie-Hellman like key exchange and secret sharing techniques that are applied at different levels of the network topology. This scheme is more efficient and less complex than existing approaches, due to the reduced communication and processing overheads required to accomplish key exchange. Furthermore, few keys with reduced sizes are managed in sensor nodes which optimizes memory usage, and enhances scalability to large size networks.

Barani, F..  2014.  A hybrid approach for dynamic intrusion detection in ad hoc networks using genetic algorithm and artificial immune system. Intelligent Systems (ICIS), 2014 Iranian Conference on. :1-6.

Mobile ad hoc network (MANET) is a self-created and self organized network of wireless mobile nodes. Due to special characteristics of these networks, security issue is a difficult task to achieve. Hence, applying current intrusion detection techniques developed for fixed networks is not sufficient for MANETs. In this paper, we proposed an approach based on genetic algorithm (GA) and artificial immune system (AIS), called GAAIS, for dynamic intrusion detection in AODV-based MANETs. GAAIS is able to adapting itself to network topology changes using two updating methods: partial and total. Each normal feature vector extracted from network traffic is represented by a hypersphere with fix radius. A set of spherical detector is generated using NicheMGA algorithm for covering the nonself space. Spherical detectors are used for detecting anomaly in network traffic. The performance of GAAIS is evaluated for detecting several types of routing attacks simulated using the NS2 simulator, such as Flooding, Blackhole, Neighbor, Rushing, and Wormhole. Experimental results show that GAAIS is more efficient in comparison with similar approaches.

Zhexiong Wei, Tang, H., Yu, F.R., Maoyu Wang, Mason, P..  2014.  Security Enhancements for Mobile Ad Hoc Networks With Trust Management Using Uncertain Reasoning. Vehicular Technology, IEEE Transactions on. 63:4647-4658.

The distinctive features of mobile ad hoc networks (MANETs), including dynamic topology and open wireless medium, may lead to MANETs suffering from many security vulnerabilities. In this paper, using recent advances in uncertain reasoning that originated from the artificial intelligence community, we propose a unified trust management scheme that enhances the security in MANETs. In the proposed trust management scheme, the trust model has two components: trust from direct observation and trust from indirect observation. With direct observation from an observer node, the trust value is derived using Bayesian inference, which is a type of uncertain reasoning when the full probability model can be defined. On the other hand, with indirect observation, which is also called secondhand information that is obtained from neighbor nodes of the observer node, the trust value is derived using the Dempster-Shafer theory (DST), which is another type of uncertain reasoning when the proposition of interest can be derived by an indirect method. By combining these two components in the trust model, we can obtain more accurate trust values of the observed nodes in MANETs. We then evaluate our scheme under the scenario of MANET routing. Extensive simulation results show the effectiveness of the proposed scheme. Specifically, throughput and packet delivery ratio (PDR) can be improved significantly with slightly increased average end-to-end delay and overhead of messages.

2015-05-05
Visala, K., Keating, A., Khan, R.H..  2014.  Models and tools for the high-level simulation of a name-based interdomain routing architecture. Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. :55-60.

The deployment and operation of global network architectures can exhibit complex, dynamic behavior and the comprehensive validation of their properties, without actually building and running the systems, can only be achieved with the help of simulations. Packet-level models are not feasible in the Internet scale, but we are still interested in the phenomena that emerge when the systems are run in their intended environment. We argue for the high-level simulation methodology and introduce a simulation environment based on aggregate models built on state-of-the-art datasets available while respecting invariants observed in measurements. The models developed are aimed at studying a clean slate name-based interdomain routing architecture and provide an abundance of parameters for sensitivity analysis and a modular design with a balanced level of detail in different aspects of the model. In addition to introducing several reusable models for traffic, topology, and deployment, we report our experiences in using the high-level simulation approach and potential pitfalls related to it.
 

2015-05-04
Vijayan, A., Thomas, T..  2014.  Anonymity, unlinkability and unobservability in mobile ad hoc networks. Communications and Signal Processing (ICCSP), 2014 International Conference on. :1880-1884.

Mobile ad hoc networks have the features of open medium, dynamic topology, cooperative algorithms, lack of centralized monitoring etc. Due to these, mobile ad hoc networks are much vulnerable to security attacks when compared to wired networks. There are various routing protocols that have been developed to cope up with the limitations imposed by the ad hoc networks. But none of these routing schemes provide complete unlinkability and unobservability. In this paper we have done a survey about anonymous routing and secure communications in mobile ad hoc networks. Different routing protocols are analyzed based on public/private key pairs and cryptosystems, within that USOR can well protect user privacy against both inside and outside attackers. It is a combination of group signature scheme and ID based encryption scheme. These are run during the route discovery process. We implement USOR on ns2, and then its performance is compared with AODV.

Ward, J.R., Younis, M..  2014.  Examining the Effect of Wireless Sensor Network Synchronization on Base Station Anonymity. Military Communications Conference (MILCOM), 2014 IEEE. :204-209.

In recent years, Wireless Sensor Networks (WSNs) have become valuable assets to both the commercial and military communities with applications ranging from industrial control on a factory floor to reconnaissance of a hostile border. A typical WSN topology that applies to most applications allows sensors to act as data sources that forward their measurements to a central sink or base station (BS). The unique role of the BS makes it a natural target for an adversary that desires to achieve the most impactful attack possible against a WSN. An adversary may employ traffic analysis techniques such as evidence theory to identify the BS based on network traffic flow even when the WSN implements conventional security mechanisms. This motivates a need for WSN operators to achieve improved BS anonymity to protect the identity, role, and location of the BS. Many traffic analysis countermeasures have been proposed in literature, but are typically evaluated based on data traffic only, without considering the effects of network synchronization on anonymity performance. In this paper we use evidence theory analysis to examine the effects of WSN synchronization on BS anonymity by studying two commonly used protocols, Reference Broadcast Synchronization (RBS) and Timing-synch Protocol for Sensor Networks (TPSN).

2015-05-01
Tsado, Y., Lund, D., Gamage, K..  2014.  Resilient wireless communication networking for Smart grid BAN. Energy Conference (ENERGYCON), 2014 IEEE International. :846-851.

The concept of Smart grid technology sets greater demands for reliability and resilience on communications infrastructure. Wireless communication is a promising alternative for distribution level, Home Area Network (HAN), smart metering and even the backbone networks that connect smart grid applications to control centres. In this paper, the reliability and resilience of smart grid communication network is analysed using the IEEE 802.11 communication technology in both infrastructure single hop and mesh multiple-hop topologies for smart meters in a Building Area Network (BAN). Performance of end to end delay and Round Trip Time (RTT) of an infrastructure mode smart meter network for Demand Response (DR) function is presented. Hybrid deployment of these network topologies is also suggested to provide resilience and redundancy in the network during network failure or when security of the network is circumvented. This recommendation can also be deployed in other areas of the grid where wireless technologies are used. DR communication from consumer premises is used to show the performance of an infrastructure mode smart metering network.

Saavedra Benitez, Y.I., Ben-Othman, J., Claude, J.-P..  2014.  Performance evaluation of security mechanisms in RAOLSR protocol for Wireless Mesh Networks. Communications (ICC), 2014 IEEE International Conference on. :1808-1812.

In this paper, we have proposed the IBE-RAOLSR and ECDSA-RAOLSR protocols for WMNs (Wireless Mesh Networks), which contributes to security routing protocols. We have implemented the IBE (Identity Based Encryption) and ECDSA (Elliptic Curve Digital Signature Algorithm) methods to secure messages in RAOLSR (Radio Aware Optimized Link State Routing), namely TC (Topology Control) and Hello messages. We then compare the ECDSA-based RAOLSR with IBE-based RAOLSR protocols. This study shows the great benefits of the IBE technique in securing RAOLSR protocol for WMNs. Through extensive ns-3 (Network Simulator-3) simulations, results have shown that the IBE-RAOLSR outperforms the ECDSA-RAOLSR in terms of overhead and delay. Simulation results show that the utilize of the IBE-based RAOLSR provides a greater level of security with light overhead.