Biblio
The existing research on the Internet of Things(IoT) security mainly focuses on attack and defense on a single protocol layer. Increasing and ubiquitous use of loT also makes it vulnerable to many attacks. An attacker try to performs the intelligent, brutal and stealthy attack that can reduce the risk of being detected. In these kinds of attacks, the attackers not only restrict themselves to a single layer of protocol stack but they also try to decrease the network performance and throughput by a simultaneous and coordinated attack on different layers. A new class of attacks, termed as cross-layer attack became prominent due to lack of interaction between MAC, routing and upper layers. These attacks achieve the better effect with reduced cost. Research has been done on cross-layer attacks in other domains like Cognitive Radio Network(CRN), Wireless Sensor Networks(WSN) and ad-hoc networks. However, our proposed scheme of cross-layer attack in IoT is the first paper to the best of our knowledge. In this paper, we have proposed Rank Manipulation and Drop Delay(RMDD) cross-layer attack in loT, we have investigated how small intensity attack on Routing protocol for low power lossy networks (RPL) degrades the overall application throughput. We have exploited the Rank system of the RPL protocol to implement the attacks. Rank is given to each node in the graph, and it shows its position in the network. If the rank could be manipulated in some manner, then the network topology can be modified. Simulation results demonstrate that the proposed attacks degrade network performance very much in terms of the throughput, latency, and connectivity.
Cross layer based approaches are increasingly becoming popular in Manet (Mobile Adhoc Network). As Manet are constrained with issues as low battery, limited bandwidth, link breakage and dynamic topology, cross layer based designs are trying to remove such barriers and trying to make Manet more scalable. Cross layer designs are also facing attacking problem and ensuring the security of network to defend the attack is must. In this paper we discuss about technique to optimize the performance by minimizing delay and overhead of secure cross layer routing protocol. We have designed SCLPC (Secure cross layer based Power control) protocol. But when security is imposed using AASR (Authenticated and anonymous secure routing), the network metrics as end to end delay and control overhead is disturbed. To optimize the network performance here we proposed OSCLPC (Optimized secure cross layer based power control protocol). The proposed OSCLPC has been evaluated using SHORT (Self healing and optimizing route technique). The OSCLPC is simulated in ns2 and it is giving the better performance compared with SCLPC.
With the development of cloud computing the topology properties of data center network are important to the computing resources. Recently a data center network structure - BCCC is proposed, which is recursively built structure with many good properties. and expandability. The Hamiltonian and expandability in data center network structure plays an extremely important role in network communication. This paper described the Hamiltonian and expandability of the expandable data center network for BCCC structure, the important role of Hamiltonian and expandability in network traffic.
Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.
Mobile ad-hoc network (MANET) is a system of wireless mobile nodes that are dynamically self-organized in arbitrary and temporary topologies, that have received increasing interest due to their potential applicability to numerous applications. The deployment of such networks however poses several security challenging issues, due to their lack of fixed communication infrastructure, centralized administration, nodes mobility and dynamic topological changes, which make it susceptible to passive and active attacks such as single and cooperative black hole, sinkhole and eavesdropping attacks. The mentioned attacks mainly disrupt data routing processes by giving false routing information or stealing secrete information by malicious nodes in MANET. Thus, finding safe routing path by avoiding malicious nodes is a genuine challenge. This paper aims at combining the existing cooperative bait detection scheme which uses the baiting procedure to bait malicious nodes into sending fake route reply and then using a reverse tracing operation to detect the malicious nodes, with an RSA encryption technique to encode data packet before transmitting it to the destination to prevent eavesdropper and other malicious nodes from unauthorized read and write on the data packet. The proposed work out performs the existing Cooperative Bait Detection Scheme (CBDS) in terms of packet delivery ratio, network throughput, end to end delay, and the routing overhead.
A significant segment of the Internet of Things (IoT) is the resource constrained Low Power and Lossy Networks (LLNs). The communication protocol used in LLNs is 6LOWPAN (IPv6 over Low-power Wireless Personal Area Network) which makes use of RPL (IPv6 Routing Protocol over Low power and Lossy network) as its routing protocol. In recent times, several security breaches in IoT networks occurred by targeting routers to instigate various DDoS (Distributed Denial of Service) attacks. Hence, routing security has become an important problem in securing the IoT environment. Though RPL meets all the routing requirements of LLNs, it is important to perform a holistic security assessment of RPL as it is susceptible to many security attacks. An important attribute of RPL is its rank property. The rank property defines the placement of sensor nodes in the RPL DODAG (Destination Oriented Directed Acyclic Graphs) based on an Objective Function. Examples of Objective Functions include Expected Transmission Count, Packet Delivery Rate etc. Rank property assists in routing path optimization, reducing control overhead and maintaining a loop free topology through rank based data path validation. In this paper, we investigate the vulnerabilities of the rank property of RPL by constructing an Attack Graph. For the construction of the Attack Graph we analyzed all the possible threats associated with rank property. Through our investigation we found that violation of protocols related to rank property results in several RPL attacks causing topological sub-optimization, topological isolation, resource consumption and traffic disruption. Routing security essentially comprises mechanisms to ensure correct implementation of the routing protocol. In this paper, we also present some observations which can be used to devise mechanisms to prevent the exploitation of the vulnerabilities of the rank property.
Smart grid is the cornerstone of the modern urban construction, leading the development trend of the urban power industry. Wireless sensor network (WSN) is widely used in smart power grid. It mainly covers two routing methods, the plane routing protocol and the clustering routing protocol. Since the plane routing protocol needs to maintain a large routing table and works with a poor scalability, it will increase the overall cost of the system in practical use. Therefore, in this paper, the clustering routing protocol is selected to achieve a better operation performance of the wireless sensor network. In order to enhance the reliability of the routing security, the data fusion technology is also utilized. Based on this method, the rationality of the topology structure of the smart grid and the security of the node information can be effectively improved.
In typical Wireless Sensor Network (WSN) applications, the sensor nodes deployed are constrained both in computational and energy resources. For this reason, simple communication protocols are usually employed along with shortrange multi-hop topologies. In this paper, we challenge this notion and propose a structure that employs more robust (and naturally more complex) forward-error correction schemes in multi-hop extended star topologies. We demonstrate using simulation and real-world data based on popular WSN platforms that this approach can actually reduce the overall energy consumption of the nodes by significant margins (from 40 to 70%) compared to traditional WSN schemes that do not support sophisticated communication mechanisms and it is feasible to implement it economically without relying on expensive hardware.
A Mobile Ad-hoc Network (MANET) is infrastructure-less network where nodes can move arbitrary in any place without the help of any fixed infrastructure. Due to the vague limit, no centralized administrator, dynamic topology and wireless connections it is powerless against various types of assaults. MANET has more threat contrast to any other conventional networks. AODV (Ad-hoc On-demand Distance Vector) is most utilized well-known routing protocol in MANET. AODV protocol is scared by "Black Hole" attack. A black hole attack is a serious assault that can be effortlessly employed towards AODV protocol. A black hole node that incorrectly replies for each path requests while not having active path to targeted destination and drops all the packets that received from other node. If these malicious nodes cooperate with every other as a set then the harm will be very extreme. In this paper, present review on various existing techniques for detection and mitigation of black hole attacks.
A Local Area Network (LAN) consists of wireless mobile nodes that can communicate with each other through electromagnetic radio waves. Mobile Ad hoc Network (MANET) consists of mobile nodes, the network is infrastructure less. It dynamically self organizes in arbitrary and temporary network topologies. Security is extremely vital for MANET. Attacks pave way for security. Among all the potential attacks on MANET, detection of wormhole attack is very difficult.One malicious node receives packets from a particular location, tunnels them to a different contagious nodes situated in another location of the network and distorts the full routing method. All routes are converged to the wormhole established by the attackers. The complete routing system in MANET gets redirected. Many existing ways have been surveyed to notice wormhole attack in MANET. Our proposed methodology is a unique wormhole detection and prevention algorithm that shall effectively notice the wormhole attack in theMANET. Our notion is to extend the detection as well as the quantitative relation relative to the existing ways.
Network coding is a potential method that numerous investigators have move forwarded due to its significant advantages to enhance the proficiency of data communication. In this work, utilize simulations to assess the execution of various network topologies employing network coding. By contrasting the results of network and without network coding, it insists that network coding can improve the throughput, end-to-end delays, Packet Delivery Rate (PDR) and consistency. This paper presents the comparative performance analysis of network coding such as, XOR, LNC, and RLNC. The results demonstrates the XOR technique has attractive outcomes and can improve the real time performance metrics i.e.; throughput, end-to-end delay and PDR by substantial limitations. The analysis has been carried out based on packet size and also number of packets to be transmitted. Results illustrates that the network coding facilitate in dependence between networks.
We present a formal method for computing the best security provisioning for Internet of Things (IoT) scenarios characterized by a high degree of mobility. The security infrastructure is intended as a security resource allocation plan, computed as the solution of an optimization problem that minimizes the risk of having IoT devices not monitored by any resource. We employ the shortfall as a risk measure, a concept mostly used in the economics, and adapt it to our scenario. We show how to compute and evaluate an allocation plan, and how such security solutions address the continuous topology changes that affect an IoT environment.
The consistency checking of network security policy is an important issue of network security field, but current studies lack of overall security strategy modeling and entire network checking. In order to check the consistency of policy in distributed network system, a security policy model is proposed based on network topology, which checks conflicts of security policies for all communication paths in the network. First, the model uniformly describes network devices, domains and links, abstracts the network topology as an undirected graph, and formats the ACL (Access Control List) rules into quintuples. Then, based on the undirected graph, the model searches all possible paths between all domains in the topology, and checks the quintuple consistency by using a classifying algorithm. The experiments in campus network demonstrate that this model can effectively detect the conflicts of policy globally in the distributed network and ensure the consistency of the network security policies.
It is hard to set up an end-to-end connection between source and destination in Opportunistic Networks, due to dynamic network topology and the lack of infrastructure. Instead, the store-carry-forward mechanism is used to achieve communication. Namely, communication in Opportunistic Networks relies on the cooperation among nodes. Correspondingly, Opportunistic Networks have some issues like long delays, packet loss and so on, which lead to many challenges in Opportunistic Networks. However, malicious nodes do not follow the routing rules, or refuse to cooperate with benign nodes. Some misbehaviors like black-hole attack, gray-hole attack may arbitrarily bloat their delivery competency to intercept and drop data. Selfishness in Opportunistic Networks will also drop some data from other nodes. These misbehaviors will seriously affect network performance like the delivery success ratio. In this paper, we design a Trust-based Routing Protocol (TRP), combined with various utility algorithms, to more comprehensively evaluate the competency of a candidate node and effectively reduce negative effects by malicious nodes. In simulation, we compare TRP with other protocols, and shows that our protocol is effective for misbehaviors.
The base station (BS) is the main device in a wireless sensor network (WSN) and used to collect data from all the sensor nodes. The information of the whole network is stored in the BS and hence it is always targeted by the adversaries who want to interrupt the operation of the network. The nodes transmit their data to the BS using multi-hop technique and hence form an eminent traffic pattern that can be easily observed by a remote adversary. The presented research aims to increase the anonymity of the BS. The proposed scheme uses a mobile BS and ring nodes to complete the above mentioned objective. The simulation results show that the proposed scheme has superior outcomes as compared to the existing techniques.
RPL is a lightweight IPv6 network routing protocol specifically designed by IETF, which can make full use of the energy of intelligent devices and compute the resource to build the flexible topological structure. This paper analyzes the security problems of RPL, sets up a test network to test RPL network security, proposes a RPL based security routing protocol M-RPL. The routing protocol establishes a hierarchical clustering network topology, the intelligent device of the network establishes the backup path in different clusters during the route discovery phase, enable backup paths to ensure data routing when a network is compromised. Setting up a test prototype network, simulating some attacks against the routing protocols in the network. The test results show that the M-RPL network can effectively resist the routing attacks. M-RPL provides a solution to ensure the Internet of Things (IoT) security.
In the last years, networking scenarios have been evolving, hand-in-hand with new and varied applications with heterogeneous Quality of Service (QoS) requirements. These requirements must be efficiently and effectively delivered. Given its static layered structure and almost complete lack of built-in QoS support, the current TCP/IP-based Internet hinders such an evolution. In contrast, the clean-slate Recursive InterNetwork Architecture (RINA) proposes a new recursive and programmable networking model capable of evolving with the network requirements, solving in this way most, if not all, TCP/IP protocol stack limitations. Network providers can better deliver communication services across their networks by taking advantage of the RINA architecture and its support for QoS. This support allows providing complete information of the QoS needs of the supported traffic flows, and thus, fulfilment of these needs becomes possible. In this work, we focus on the importance of path selection to better ensure QoS guarantees in long-haul RINA networks. We propose and evaluate a programmable strategy for path selection based on flow QoS parameters, such as the maximum allowed latency and packet losses, comparing its performance against simple shortest-path, fastest-path and connection-oriented solutions.
Underwater acoustic networks is an enabling technology for a range of applications such as mine countermeasures, intelligence and reconnaissance. Common for these applications is a need for robust information distribution while minimizing energy consumption. In terrestrial wireless networks topology information is often used to enhance the efficiency of routing, in terms of higher capacity and less overhead. In this paper we asses the effects of topology information on routing in underwater acoustic networks. More specifically, the interplay between long propagation delays, contention-based channels access and dissemination of varying degrees of topology information is investigated. The study is based on network simulations of a number of network protocols that make use of varying amounts of topology information. The results indicate that, in the considered scenario, relying on local topology information to reduce retransmissions may have adverse effects on the reliability. The difficult channel conditions and the contention-based channels access methods create a need for an increased amount of diversity, i.e., more retransmissions. In the scenario considered, an opportunistic flooding approach is a better, both in terms of robustness and energy consumption.
The focus of this paper is to propose an integration between Internet of Things (IoT) and Video Surveillance, with the aim to satisfy the requirements of the future needs of Video Surveillance, and to accomplish a better use. IoT is a new technology in the sector of telecommunications. It is a network that contains physical objects, items, and devices, which are embedded with sensors and software, thus enabling the objects, and allowing for their data exchange. Video Surveillance systems collect and exchange the data which has been recorded by sensors and cameras and send it through the network. This paper proposes an innovative topology paradigm which could offer a better use of IoT technology in Video Surveillance systems. Furthermore, the contribution of these technologies provided by Internet of Things features in dealing with the basic types of Video Surveillance technology with the aim to improve their use and to have a better transmission of video data through the network. Additionally, there is a comparison between our proposed topology and relevant proposed topologies focusing on the security issue.
Traffic normalization, i.e. enforcing a constant stream of fixed-length packets, is a well-known measure to completely prevent attacks based on traffic analysis. In simple configurations, the enforced traffic rate can be statically configured by a human operator, but in large virtual private networks (VPNs) the traffic pattern of many connections may need to be adjusted whenever the overlay topology or the transport capacity of the underlying infrastructure changes. We propose a rate-based congestion control mechanism for automatic adjustment of traffic patterns that does not leak any information about the actual communication. Overly strong rate throttling in response to packet loss is avoided, as the control mechanism does not change the sending rate immediately when a packet loss was detected. Instead, an estimate of the current packet loss rate is obtained and the sending rate is adjusted proportionally. We evaluate our control scheme based on a measurement study in a local network testbed. The results indicate that the proposed approach avoids network congestion, enables protected TCP flows to achieve an increased goodput, and yet ensures appropriate traffic flow confidentiality.
Separation of network control from devices in Software Defined Network (SDN) allows for centralized implementation and management of security policies in a cloud computing environment. The ease of programmability also makes SDN a great platform implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. Dynamic change of network topology, or host reconfiguration in such networks might require corresponding changes to the flow rules in the SDN based cloud environment. Verifying adherence of these new flow policies in the environment to the organizational security policies and ensuring a conflict free environment is especially challenging. In this paper, we extend the work on rule conflicts from a traditional environment to an SDN environment, introducing a new classification to describe conflicts stemming from cross-layer conflicts. Our framework ensures that in any SDN based cloud, flow rules do not have conflicts at any layer; thereby ensuring that changes to the environment do not lead to unintended consequences. We demonstrate the correctness, feasibility and scalability of our framework through a proof-of-concept prototype.
The Mobile Ad-hoc Networks (MANET) are suffering from network partitioning when there is group mobility and thus cannot efficiently provide connectivity to all nodes in the network. Autonomous Mobile Mesh Network (AMMNET) is a new class of MANET which will overcome the weakness of MANET, especially from network partitioning. However, AMMNET is vulnerable to routing attacks such as Blackhole attack in which malicious node can make itself as intragroup, intergroup or intergroup bridge router and disrupt the network. In AMMNET, To maintain connectivity, network survivability is an important aspect of reliable communication. Maintaning security is a challenge in the self organising nature of the topology. To address this weakness proposed approach measured the performance of the impact of security enhancement on AMMNET with the basis of bait detection scheme. Modified bait approach that will prevent blackhole node entering into the network and helps to maintain the reliability of the network. The proposed scheme uses the idea of Wumpus World concept from Artificial Intelligence. Modified bait scheme will prevent the blackhole attack and secures network.
Forming, in a decentralized fashion, an optimal network topology while balancing multiple, possibly conflicting objectives like cost, high performance, security and resiliency to viruses is a challenging endeavor. In this paper, we take a game-formation approach to network design where each player, for instance an autonomous system in the Internet, aims to collectively minimize the cost of installing links, of protecting against viruses, and of assuring connectivity. In the game, minimizing virus risk as well as connectivity costs results in sparse graphs. We show that the Nash Equilibria are trees that, according to the Price of Anarchy (PoA), are close to the global optimum, while the worst-case Nash Equilibrium and the global optimum may significantly differ for small infection rate and link installation cost. Moreover, the types of trees, in both the Nash Equilibria and the optimal solution, depend on the virus infection rate, which provides new insights into how viruses spread: for high infection rate τ, the path graph is the worst- and the star graph is the best-case Nash Equilibrium. However, for small and intermediate values of τ, trees different from the path and star graphs may be optimal.
Deadlock freedom is a key challenge in the design of communication networks. Wormhole switching is a popular switching technique, which is also prone to deadlocks. Deadlock analysis of routing functions is a manual and complex task. We propose an algorithm that automatically proves routing functions deadlock-free or outputs a minimal counter-example explaining the source of the deadlock. Our algorithm is the first to automatically check a necessary and sufficient condition for deadlock-free routing. We illustrate its efficiency in a complex adaptive routing function for torus topologies. Results are encouraging. Deciding deadlock freedom is co-NP-Complete for wormhole networks. Nevertheless, our tool proves a 13 × 13 torus deadlock-free within seconds. Finding minimal deadlocks is more difficult. Our tool needs four minutes to find a minimal deadlock in a 11 × 11 torus while it needs nine hours for a 12 × 12 network.
This paper addresses the minimum transmission broadcast (MTB) problem for the many-to-all scenario in wireless multihop networks and presents a network-coding broadcast protocol with priority-based deadlock prevention. Our main contributions are as follows: First, we relate the many-to-all-with-network-coding MTB problem to a maximum out-degree problem. The solution of the latter can serve as a lower bound for the number of transmissions. Second, we propose a distributed network-coding broadcast protocol, which constructs efficient broadcast trees and dictates nodes to transmit packets in a network coding manner. Besides, we present the priority-based deadlock prevention mechanism to avoid deadlocks. Simulation results confirm that compared with existing protocols in the literature and the performance bound we present, our proposed network-coding broadcast protocol performs very well in terms of the number of transmissions.