Visible to the public Biblio

Filters: Keyword is power electronics  [Clear All Filters]
2023-08-11
Zhuoyu, Han, Yongzhen, Li.  2022.  Design and implementation of efficient hash functions. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA). :1240—1243.
With the rapid popularity of the network, the development of information encryption technology has a significant role and significance in securing network security. The security of information has become an issue of concern to the whole society, and the study of cryptography has been increasingly concerned, and the hash function is the core of modern cryptography, the most common hash algorithms are MD5 series of algorithms, SHA series of algorithms. MD5 is a popular and excellent typical Hash encryption technology today, which is used for password management, electronic signature, spam screening. In this paper, we focus on the improved MD5 algorithm with more efficiency, focusing on the internal structure of MD5, and finally making it more efficient in retrieval.
2023-07-19
Moradi, Majid, Heydari, Mojtaba, Zarei, Seyed Fariborz.  2022.  Distributed Secondary Control for Voltage Restoration of ESSs in a DC Microgrid. 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). :431—436.
Due to the intermittent nature of renewable energy sources, the implementation of energy storage systems (ESSs) is crucial for the reliable operation of microgrids. This paper proposes a peer-to-peer distributed secondary control scheme for accurate voltage restoration of distributed ESS units in a DC microgrid. The presented control framework only requires local and neighboring information to function. Besides, the ESSs communicate with each other through a sparse network in a discrete fashion compared to existing approaches based on continuous data exchange. This feature ensures reliability, expandability, and flexibility of the proposed strategy for a more practical realization of distributed control paradigm. A simulation case study is presented using MATLAB/Simulink to illustrate the performance and effectiveness of the proposed control strategy.
2023-07-11
Ma, Rui, Zhan, Meng.  2022.  Transient Stability Assessment and Dynamic Security Region in Power Electronics Dominated Power Systems. 2022 IEEE International Conference on Power Systems Technology (POWERCON). :1—6.
Transient stability accidents induced by converter-based resources have been emerging frequently around the world. In this paper, the transient stability of the grid-tied voltage source converter (VSC) system is studied through estimating the basin of attraction (BOA) based on the hyperplane or hypersurface method. Meanwhile, fault critical clearing times are estimated, based on the approximated BOA and numerical fault trajectory. Further, the dynamic security region (DSR), an important index in traditional power systems, is extended to power-electronics-dominated power systems in this paper. The DSR of VSC is defined in the space composed of active current references. Based on the estimated BOA, the single-VSC-infinite-bus system is taken as an example and its DSR is evaluated. Finally, all these analytical results are well verified by several numerical simulations in MATLAB/Simulink.
2023-05-11
Jawdeh, Shaya Abou, Choi, Seungdeog, Liu, Chung-Hung.  2022.  Model-Based Deep Learning for Cyber-Attack Detection in Electric Drive Systems. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). :567–573.
Modern cyber-physical systems that comprise controlled power electronics are becoming more internet-of-things-enabled and vulnerable to cyber-attacks. Therefore, hardening those systems against cyber-attacks becomes an emerging need. In this paper, a model-based deep learning cyber-attack detection to protect electric drive systems from cyber-attacks on the physical level is proposed. The approach combines the model physics with a deep learning-based classifier. The combination of model-based and deep learning will enable more accurate cyber-attack detection results. The proposed cyber-attack detector will be trained and simulated on a PM based electric drive system to detect false data injection attacks on the drive controller command and sensor signals.
ISSN: 2470-6647
2022-03-22
Molina-Barros, Lucas, Romero-Rodriguez, Miguel, Pietrac, Laurent, Dumitrescu, Emil.  2021.  Supervisory control of post-fault restoration schemes in reconfigurable HVDC grids. 2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe). :1—10.
This paper studies the use of Supervisory Control Theory to design and implement post-fault restoration schemes in a HVDC grid. Our study focuses on the synthesis of discrete controllers and on the management of variable control rules during the execution of the protection strategy. The resulting supervisory control system can be proven "free of deadlocks" in the sense that designated tasks are always completed.
2022-02-22
Xuguang, Zhu.  2021.  A Certainty-guaranteed inter/intra-core communication method for multi-core embedded systems. 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). :1024—1027.

In order to meet the actual needs of operating system localization and high-security operating system, this paper proposes a multi-core embedded high-security operating system inter-core communication mechanism centered on private memory on the core based on the cache mechanism of DSP processors such as Feiteng design. In order to apply it to the multi-core embedded high-security operating system, this paper also combines the priority scheduling scheme used in the design of our actual operating system to analyze the certainty of inter-core communication. The analysis result is: under this communication mechanism There is an upper limit for end-to-end delay, so the certainty of the communication mechanism is guaranteed and can be applied to multi-core high-security embedded operating systems.

2020-02-17
Moquin, S. J., Kim, SangYun, Blair, Nicholas, Farnell, Chris, Di, Jia, Mantooth, H. Alan.  2019.  Enhanced Uptime and Firmware Cybersecurity for Grid-Connected Power Electronics. 2019 IEEE CyberPELS (CyberPELS). :1–6.
A distributed energy resource prototype is used to show cybersecurity best practices. These best practices include straightforward security techniques, such as encrypted serial communication. The best practices include more sophisticated security techniques, such as a method to evaluate and respond to firmware integrity at run-time. The prototype uses embedded Linux, a hardware-assisted monitor, one or more digital signal processors, and grid-connected power electronics. Security features to protect communication, firmware, power flow, and hardware are developed. The firmware run-time integrity security is presently evaluated, and shown to maintain power electronics uptime during firmware updating. The firmware run-time security feature can be extended to allow software rejuvenation, multi-mission controls, and greater flexibility and security in controls.
2020-02-10
Naseem, Faraz, Babun, Leonardo, Kaygusuz, Cengiz, Moquin, S.J., Farnell, Chris, Mantooth, Alan, Uluagac, A. Selcuk.  2019.  CSPoweR-Watch: A Cyber-Resilient Residential Power Management System. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :768–775.

Modern Energy Management Systems (EMS) are becoming increasingly complex in order to address the urgent issue of global energy consumption. These systems retrieve vital information from various Internet-connected resources in a smart grid to function effectively. However, relying on such resources results in them being susceptible to cyber attacks. Malicious actors can exploit the interconnections between the resources to perform nefarious tasks such as modifying critical firmware, sending bogus sensor data, or stealing sensitive information. To address this issue, we propose a novel framework that integrates PowerWatch, a solution that detects compromised devices in the smart grid with Cyber-secure Power Router (CSPR), a smart energy management system. The goal is to ascertain whether or not such a device has operated maliciously. To achieve this, PowerWatch utilizes a machine learning model that analyzes information from system and library call lists extracted from CSPR in order to detect malicious activity in the EMS. To test the efficacy of our framework, a number of unique attack scenarios were performed on a realistic testbed that comprises functional versions of CSPR and PowerWatch to monitor the electrical environment for suspicious activity. Our performance evaluation investigates the effectiveness of this first-of-its-kind merger and provides insight into the feasibility of developing future cybersecure EMS. The results of our experimental procedures yielded 100% accuracy for each of the attack scenarios. Finally, our implementation demonstrates that the integration of PowerWatch and CSPR is effective and yields minimal overhead to the EMS.

2019-12-16
Ferdowsi, Farzad, Barati, Masoud, Edrington, Chris S..  2019.  Real-Time Resiliency Assessment of Control Systems in Microgrids Using the Complexity Metric. 2019 IEEE Green Technologies Conference(GreenTech). :1-5.

This paper presents a novel technique to quantify the operational resilience for power electronic-based components affected by High-Impact Low-Frequency (HILF) weather-related events such as high speed winds. In this study, the resilience quantification is utilized to investigate how prompt the system goes back to the pre-disturbance or another stable operational state. A complexity quantification metric is used to assess the system resilience. The test system is a Solid-State Transformer (SST) representing a complex, nonlinear interconnected system. Results show the effectiveness of the proposed technique for quantifying the operational resilience in systems affected by weather-related disturbances.