Visible to the public Biblio

Filters: Keyword is Jellyfish  [Clear All Filters]
2022-02-07
Nurwarsito, Heru, Iskandar, Chairul.  2021.  Detection Jellyfish Attacks Against Dymo Routing Protocol on Manet Using Delay Per-Hop Indicator (Delphi) Method. 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT). :385–390.
Mobile Ad Hoc Network (MANET) is one of the types of Ad-hoc Network which is comprised of wireless in a network. The main problem in this research is the vulnerability of the protocol routing Dymo against jellyfish attack, so it needs detection from a jellyfish attack. This research implements the DELPHI method to detect jellyfish attacks on a DYMO protocol which has better performance because the Delay Per-Hop Indicator (DELPHI) gathers the amount of hop and information delay from the disjoint path and calculates the delays per-hop as an indicator of a jellyfish attack. The evaluation results indicate an increase in the end-to-end delay average, start from 112.59s in 10 nodes increased to 143.732s in 30 nodes but reduced to 84,2142s in 50 nodes. But when the DYMO routing did not experience any jellyfish attacks both the delivery ratio and throughput are decreased. The delivery ratio, where decreased from 10.09% to 8.19% in 10 nodes, decreased from 20.35% to 16.85%, and decreased from 93.5644% to 82.825% in 50 nodes. As for the throughput, for 10 nodes decreased from 76.7677kbps to 68.689kbps, for 30 nodes decreased from 100kbps to 83.5821kbps and for 50 nodes decreased from 18.94kbps to 15.94kbps.
2019-12-16
Pal, Manjish, Sahu, Prashant, Jaiswal, Shailesh.  2018.  LevelTree: A New Scalable Data Center Networks Topology. 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :482-486.

In recent time it has become very crucial for the data center networks (DCN) to broaden the system limit to be able to meet with the increasing need of cloud based applications. A decent DCN topology must comprise of numerous properties for low diameter, high bisection bandwidth, ease of organization and so on. In addition, a DCN topology should depict aptness in failure resiliency, scalability, construction and routing. In this paper, we introduce a new Data Center Network topology termed LevelTree built up with several modules grows as a tree topology and each module is constructed from a complete graph. LevelTree demonstrates great topological properties and it beats critical topologies like Jellyfish, VolvoxDC, and Fattree regarding providing a superior worthwhile plan with greater capacity.