Biblio
This paper addresses the issues in managing group key among clusters in Mobile Ad hoc Networks (MANETs). With the dynamic movement of the nodes, providing secure communication and managing secret keys in MANET is difficult to achieve. In this paper, we propose a distributed secure broadcast stateless groupkey management framework (DSBS-GKM) for efficient group key management. This scheme combines the benefits of hash function and Lagrange interpolation polynomial in managing MANET nodes. To provide a strong security mechanism, a revocation system that detects and revokes misbehaviour nodes is presented. The simulation results show that the proposed DSBS-GKM scheme attains betterments in terms of rekeying and revocation performance while comparing with other existing key management schemes.
The wireless technology has knocked the door of tremendous usage and popularity in the last few years along with a high growth rate for new applications in the networking domain. Mobile Ad hoc Networks (MANETs) is solitary most appealing, alluring and challenging field where in the participating nodes do not require any active, existing and centralized system or rigid infrastructure for execution purpose and thus nodes have the moving capability on arbitrary basis. Radio range nodes directly communicate with each other through the wireless links whereas outside range nodes uses relay principle for communication. Though it is a rigid infrastructure less environment and has high growth rate but security is a major concern and becomes vital part of providing hostile free environment for communication. The MANET imposes several prominent challenges such as limited energy reserve, resource constraints, highly dynamic topology, sharing of wireless medium, energy inefficiency, recharging of the batteries etc. These challenges bound to make MANET more susceptible, more close to attacks and weak unlike the wired line networks. Theresearch paperismainly focused on two aspects, one is computation termination of cluster head algorithm and another is use of finite state machine for attacks identification.
From recent few years, need of information security is realized by society amd researchers specially in multi-path, unstructured networks as Mobile Ad-hoc Network. Devices connected in such network are self-configuring and small in size and can communicate in infra less environment. Architecture is very much dynamic and absence of central controlling authority puts challenges to the network by making more vulnerable for various threats and attacks in order to exploit the function of the network. The paper proposes, TCP analysis against very popular attack i.e. blackhole attack. Under different circumstance, reliable transport layer protocol TCP is analyzed for the effects of the attack on adhoc network. Performance has been measured using metrics of average throughput, normalized routing load and end to end delay and conclusions have been drawn based on that.
In the Mobile Ad hoc Network, the entire nodes taken as routers and contribute transmission when the nodes are not in the range of transmission for the senders. Directing conventions for the ad hoc systems are intended for the indisposed system setting, on the supposition that all the hubs in the system are reliable. Dependability of the directing convention is endangered in the genuine setting as systems are assaulted by pernicious hubs which regularly will in general upset the correspondence. Right now, it is proposed to contemplate the exhibition of the DSR convention under deceitful conditions. Another strategy is proposed to recognize untrue nodes dependent on the RREQ control parcel arrangement.
In the communication model of wired and wireless Adhoc networks, the most needed requirement is the integration of security. Mobile Adhoc networks are more aroused with the attacks compared to the wired environment. Subsequently, the characteristics of Mobile Adhoc networks are also influenced by the vulnerability. The pre-existing unfolding solutions are been obtained for infrastructure-less networks. However, these solutions are not always necessarily suitable for wireless networks. Further, the framework of wireless Adhoc networks has uncommon vulnerabilities and due to this behavior it is not protected by the same solutions, therefore the detection mechanism of intrusion is combinedly used to protect the Manets. Several intrusion detection techniques that have been developed for a fixed wired network cannot be applied in this new environment. Furthermore, The issue of intensity in terms of energy is of a major kind due to which the life of the working battery is very limited. The objective this research work is to detect the Anomalous behavior of nodes in Manet's and Experimental analysis is done by making use of Network Simulator-2 to do the comparative analysis for the existing algorithm, we enhanced the previous algorithm in order to improve the Energy efficiency and results shown the improvement of energy of battery life and Throughput is checked with respect to simulation of test case analysis. In this paper, the proposed algorithm is compared with the existing approach.
Security awareness and energy efficiency are two crucial optimization issues present in MANET where the network topology gets adequately changed and is not predictable which affects the lifetime of the MANET. They are extensively analyzed to improvise the lifetime of the MANET. This paper concentrates on the design of an energy-efficient security-aware fuzzy-based clustering (SFLC) technique to make the network secure and energy-efficient. The selection of cluster heads (CHD) process using fuzzy logic (FL) involves the trust factor as an important input variable. Once the CHDs are elected successfully, clusters will be constructed and start to communication with one another as well as the base station (BS). The presented SFLC model is simulated using NS2 and the performance is validated in terms of energy, lifetime and computation time.