Visible to the public Biblio

Filters: Keyword is compute unified device architecture  [Clear All Filters]
2020-06-26
M, Raviraja Holla, D, Suma.  2019.  Memory Efficient High-Performance Rotational Image Encryption. 2019 International Conference on Communication and Electronics Systems (ICCES). :60—64.

Image encryption is an essential part of a Visual Cryptography. Existing traditional sequential encryption techniques are infeasible to real-time applications. High-performance reformulations of such methods are increasingly growing over the last decade. These reformulations proved better performances over their sequential counterparts. A rotational encryption scheme encrypts the images in such a way that the decryption is possible with the rotated encrypted images. A parallel rotational encryption technique makes use of a high-performance device. But it less-leverages the optimizations offered by them. We propose a rotational image encryption technique which makes use of memory coalescing provided by the Compute Unified Device Architecture (CUDA). The proposed scheme achieves improved global memory utilization and increased efficiency.

2019-12-30
Razaque, Abdul, Jinrui, Wang, Zancheng, Wang, Hani, Qassim Bani, Khaskheli, Murad Ali, Bhutto, Waseem Ahmed.  2018.  Integration of CPU and GPU to Accelerate RSA Modular Exponentiation Operation. 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1-6.

Now-a-days, the security of data becomes more and more important, people store many personal information in their phones. However, stored information require security and maintain privacy. Encryption algorithm has become the main force of maintaining the security of data. Thus, the algorithm complexity and encryption efficiency have become the main measurement of whether the encryption algorithm is save or not. With the development of hardware, we have many tools to improve the algorithm at present. Because modular exponentiation in RSA algorithm can be divided into several parts mathematically. In this paper, we introduce a conception by dividing the process of encryption and add the model into graphics process unit (GPU). By using GPU's capacity in parallel computing, the core of RSA can be accelerated by using central process unit (CPU) and GPU. Compute unified device architecture (CUDA) is a platform which can combine CPU and GPU together to realize GPU parallel programming and this is the tool we use to perform experience of accelerating RSA algorithm. This paper will also build up a mathematical model to help understand the mechanism of RSA encryption algorithm.