Visible to the public Biblio

Filters: Keyword is encryption efficiency  [Clear All Filters]
2020-04-03
Zhou, Hai, Rezaei, Amin, Shen, Yuanqi.  2019.  Resolving the Trilemma in Logic Encryption. 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—8.

Logic encryption, a method to lock a circuit from unauthorized use unless the correct key is provided, is the most important technique in hardware IP protection. However, with the discovery of the SAT attack, all traditional logic encryption algorithms are broken. New algorithms after the SAT attack are all vulnerable to structural analysis unless a provable obfuscation is applied to the locked circuit. But there is no provable logic obfuscation available, in spite of some vague resorting to logic resynthesis. In this paper, we formulate and discuss a trilemma in logic encryption among locking robustness, structural security, and encryption efficiency, showing that pre-SAT approaches achieve only structural security and encryption efficiency, and post-SAT approaches achieve only locking robustness and encryption efficiency. There is also a dilemma between query complexity and error number in locking. We first develop a theory and solution to the dilemma in locking between query complexity and error number. Then, we provide a provable obfuscation solution to the dilemma between structural security and locking robustness. We finally present and discuss some results towards the resolution of the trilemma in logic encryption.

2019-12-30
Razaque, Abdul, Jinrui, Wang, Zancheng, Wang, Hani, Qassim Bani, Khaskheli, Murad Ali, Bhutto, Waseem Ahmed.  2018.  Integration of CPU and GPU to Accelerate RSA Modular Exponentiation Operation. 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1-6.

Now-a-days, the security of data becomes more and more important, people store many personal information in their phones. However, stored information require security and maintain privacy. Encryption algorithm has become the main force of maintaining the security of data. Thus, the algorithm complexity and encryption efficiency have become the main measurement of whether the encryption algorithm is save or not. With the development of hardware, we have many tools to improve the algorithm at present. Because modular exponentiation in RSA algorithm can be divided into several parts mathematically. In this paper, we introduce a conception by dividing the process of encryption and add the model into graphics process unit (GPU). By using GPU's capacity in parallel computing, the core of RSA can be accelerated by using central process unit (CPU) and GPU. Compute unified device architecture (CUDA) is a platform which can combine CPU and GPU together to realize GPU parallel programming and this is the tool we use to perform experience of accelerating RSA algorithm. This paper will also build up a mathematical model to help understand the mechanism of RSA encryption algorithm.