Visible to the public Biblio

Filters: Keyword is surface cracks  [Clear All Filters]
2021-02-15
Liang, Y., Bai, L., Shao, J., Cheng, Y..  2020.  Application of Tensor Decomposition Methods In Eddy Current Pulsed Thermography Sequences Processing. 2020 International Conference on Sensing, Measurement Data Analytics in the era of Artificial Intelligence (ICSMD). :401–406.
Eddy Current Pulsed Thermography (ECPT) is widely used in Nondestructive Testing (NDT) of metal defects where the defect information is sometimes affected by coil noise and edge noise, therefore, it is necessary to segment the ECPT image sequences to improve the detection effect, that is, segmenting the defect part from the background. At present, the methods widely used in ECPT are mostly based on matrix decomposition theory. In fact, tensor decomposition is a new hotspot in the field of image segmentation and has been widely used in many image segmentation scenes, but it is not a general method in ECPT. This paper analyzes the feasibility of the usage of tensor decomposition in ECPT and designs several experiments on different samples to verify the effects of two popular tensor decomposition algorithms in ECPT. This paper also compares the matrix decomposition methods and the tensor decomposition methods in terms of treatment effect, time cost, detection success rate, etc. Through the experimental results, this paper points out the advantages and disadvantages of tensor decomposition methods in ECPT and analyzes the suitable engineering application scenarios of tensor decomposition in ECPT.
2020-01-13
Wang, Xiao-yu, Li, Cong-cong, Wu, Hao-dong, Zhang, De, Zhang, Xiao-dong, Gong, Xun.  2019.  NDE Application of Air-Coupled Transducer for Surface Crack Detection. 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :1–4.
According to the technical difficulties of the air-coupled piezoelectric ultrasonic transducer, 1-3 type piezoelectric composites and double matching layers structure are adopted in order to solve the acoustic impedance mismatch at the interface between the piezoelectric materials and air. The optimal design of the matching layer thickness for double matching layers structure air-coupled ultrasonic transducer is also completed through experiments. Based on this, 440 kHz flat-plate and focused air-coupled piezoelectric ultrasonic transducer are designed, fabricated and characterized. Finally, surface cracks are detected using the focused air-coupled piezoelectric ultrasonic transducer.