Visible to the public Biblio

Filters: Keyword is disaster recovery  [Clear All Filters]
2020-05-26
Fu, Yulong, Li, Guoquan, Mohammed, Atiquzzaman, Yan, Zheng, Cao, Jin, Li, Hui.  2019.  A Study and Enhancement to the Security of MANET AODV Protocol Against Black Hole Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1431–1436.
Mobile AdHoc Networks (MANET) can be fast implemented, and it is very popular in many specific network requirements, such as UAV (Unmanned Aerial Unit), Disaster Recovery and IoT (Internet of Things) etc. However, MANET is also vulnerable. AODV (Ad hoc On-Demand Distance Vector Routing) protocol is one type of MANET routing protocol and many attacks can be implemented to break the connections on AODV based AdHoc networks. In this article, aim of protecting the MANET security, we modeled the AODV protocol with one type of Automata and analyzed the security vulnerabilities of it; then based on the analyzing results, we proposed an enhancement to AODV protocol to against the Black Hole Attacks. We also implemented the proposed enhancement in NS3 simulator and verified the correctness, usability and efficiency.
2020-01-20
Zhu, Yan, Zhang, Yi, Wang, Jing, Song, Weijing, Chu, Cheng-Chung, Liu, Guowei.  2019.  From Data-Driven to Intelligent-Driven: Technology Evolution of Network Security in Big Data Era. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:103–109.

With the advent of the big data era, information systems have exhibited some new features, including boundary obfuscation, system virtualization, unstructured and diversification of data types, and low coupling among function and data. These features not only lead to a big difference between big data technology (DT) and information technology (IT), but also promote the upgrading and evolution of network security technology. In response to these changes, in this paper we compare the characteristics between IT era and DT era, and then propose four DT security principles: privacy, integrity, traceability, and controllability, as well as active and dynamic defense strategy based on "propagation prediction, audit prediction, dynamic management and control". We further discuss the security challenges faced by DT and the corresponding assurance strategies. On this basis, the big data security technologies can be divided into four levels: elimination, continuation, improvement, and innovation. These technologies are analyzed, combed and explained according to six categories: access control, identification and authentication, data encryption, data privacy, intrusion prevention, security audit and disaster recovery. The results will support the evolution of security technologies in the DT era, the construction of big data platforms, the designation of security assurance strategies, and security technology choices suitable for big data.