Biblio
Filters: Keyword is network defense [Clear All Filters]
A Selection Strategy for Network Security Defense Based on a Time Game Model. 2021 International Conference on Digital Society and Intelligent Systems (DSInS). :223—228.
.
2021. Current network assessment models often ignore the impact of attack-defense timing on network security, making it difficult to characterize the dynamic game of attack-defense effectively. To effectively manage the network security risks and reduce potential losses, in this article, we propose a selection strategy for network defense based on a time game model. By analyzing the attack-defense status by analogy with the SIR infectious disease model, construction of an optimal defense strategy model based on time game, and calculation of the Nash equilibrium of the the attacker and the defender under different strategies, we can determine an optimal defense strategy. With the Matlab simulation, this strategy is verified to be effective.
Security Management and Visualization in a Blockchain-based Collaborative Defense. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :108–111.
.
2019. A cooperative network defense is one approach to fend off large-scale Distributed Denial-of-Service (DDoS) attacks. In this regard, the Blockchain Signaling System (BloSS) is a multi-domain, blockchain-based, cooperative DDoS defense system, where each Autonomous System (AS) is taking part in the defense alliance. Each AS can exchange attack information about ongoing attacks via the Ethereum blockchain. However, the currently operational implementation of BloSS is not interactive or visualized, but the DDoS mitigation is automated. In realworld defense systems, a human cybersecurity analyst decides whether a DDoS threat should be mitigated or not. Thus, this work presents the design of a security management dashboard for BloSS, designed for interactive use by cyber security analysts.
Modeling Modern Network Attacks and Countermeasures Using Attack Graphs. 2009 Annual Computer Security Applications Conference. :117–126.
.
2009. By accurately measuring risk for enterprise networks, attack graphs allow network defenders to understand the most critical threats and select the most effective countermeasures. This paper describes substantial enhancements to the NetSPA attack graph system required to model additional present-day threats (zero-day exploits and client-side attacks) and countermeasures (intrusion prevention systems, proxy firewalls, personal firewalls, and host-based vulnerability scans). Point-to-point reachability algorithms and structures were extensively redesigned to support "reverse" reachability computations and personal firewalls. Host-based vulnerability scans are imported and analyzed. Analysis of an operational network with 84 hosts demonstrates that client-side attacks pose a serious threat. Experiments on larger simulated networks demonstrated that NetSPA's previous excellent scaling is maintained. Less than two minutes are required to completely analyze a four-enclave simulated network with more than 40,000 hosts protected by personal firewalls.