Visible to the public Biblio

Filters: Keyword is Finite impulse response filters  [Clear All Filters]
2022-10-20
Mahesh, V V, Shahana, T K.  2020.  Design and synthesis of FIR filter banks using area and power efficient Stochastic Computing. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :662—666.
Stochastic computing is based on probability concepts which are different from conventional mathematical operations. Advantages of stochastic computing in the fields of neural networks and digital image processing have been reported in literature recently. Arithmetic operations especially multiplications can be performed either by logical AND gates in unipolar format or by EXNOR gates in bipolar format in stochastic computation. Stochastic computing is inherently fault-tolerant and requires fewer logic gates to implement arithmetic operations. Long computing time and low accuracy are the main drawbacks of this system. In this presentation, to reduce hardware requirement and delay, modified stochastic multiplication using AND gate array and multiplexer are used for the design of Finite Impulse Response Filter cores. Performance parameters such as area, power and delay for FIR filter using modified stochastic computing methods are compared with conventional floating point computation.
2021-09-07
Tarek, Md Nurul Anwar, Novak, Markus, Alwan, Elias A..  2020.  RF Coupling Suppression Circuit for Simultaneous Transmit and Receive Systems. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. :1833–1834.
Wireless technology is growing at a fast rate to accommodate the expanding user demands. Currently the radio frequency (RF) spectrum is highly congested and more susceptible to signal fratricide and interference. Therefore, full duplexing techniques are required to enhance the access to the spectrum. Simultaneous Transmit and receive systems (STAR), also known as in-band full duplex systems, are gaining higher attention due to their capability to double spectral efficiency. However, successful implementation of STAR systems requires significant isolation between the transmit and receive signals to reduce self-interference (SI) signal. To minimize this self-interference, front-end coupling cancellation circuits are employed in STAR system. In this paper, an RF coupling suppression circuit is presented based on a hybrid finite impulse response filter (FIR) and resonator architecture. Notably, this newly developed FIR-resonator circuit achieves \textbackslashtextgreater30dB cancellation across a \textbackslashtextgreater1.5:1 bandwidth.
2020-11-09
Sengupta, A., Roy, D., Mohanty, S. P..  2019.  Low-Overhead Robust RTL Signature for DSP Core Protection: New Paradigm for Smart CE Design. 2019 IEEE International Conference on Consumer Electronics (ICCE). :1–6.
The design process of smart Consumer Electronics (CE) devices heavily relies on reusable Intellectual Property (IP) cores of Digital Signal Processor (DSP) and Multimedia Processor (MP). On the other hand, due to strict competition and rivalry between IP vendors, the problem of ownership conflict and IP piracy is surging. Therefore, to design a secured smart CE device, protection of DSP/MP IP core is essential. Embedding a robust IP owner's signature can protect an IP core from ownership abuse and forgery. This paper presents a covert signature embedding process for DSP/MP IP core at Register-transfer level (RTL). The secret marks of the signature are distributed over the entire design such that it provides higher robustness. For example for 8th order FIR filter, it incurs only between 6% and 3% area overhead for maximum and minimum size signature respectively compared to the non-signature FIR RTL design but with significantly enhanced security.
2020-08-03
Saxena, Shubhankar, Jais, Rohan, Hota, Malaya Kumar.  2019.  Removal of Powerline Interference from ECG Signal using FIR, IIR, DWT and NLMS Adaptive Filter. 2019 International Conference on Communication and Signal Processing (ICCSP). :0012–0016.
ECG signals are often corrupted by 50 Hz noise, the frequency from the power supply. So it becomes quite necessary to remove Power Line Interference (PLI) from the ECG signal. The reference ECG signal data was taken from the MIT-BIH database. Different filtering techniques comprising of Discrete Wavelet Transform (DWT), Normalized Least Mean Square (NLMS) filter, Finite Impulse Response (FIR) filter and Infinite Impulse Response (IIR) filter were used in this paper for denoising the ECG signal which was corrupted by the PLI. Later, the comparison was made among the methods, to find the best methodology to denoise the corrupted ECG signal. The parameters that were used for the comparison are Mean Square Error (MSE), Mean Absolute Error (MAE), Signal to Noise Ratio (SNR) and Peak Signal to Noise Ratio (PSNR). Higher values of SNR & PSNR and lower values of MSE & MAE define the best denoising algorithm.
2019-12-02
Sengupta, Anirban, Kachave, Deepak.  2018.  Integrating Compiler Driven Transformation and Simulated Annealing Based Floorplan for Optimized Transient Fault Tolerant DSP Cores. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :17–20.
Reliability of electronic devices in sub-nanometer technology scale has become a major concern. However, demand for battery operated low power, high performance devices necessitates technology scaling. To meet these contradictory design goals optimization and reliability must be performed simultaneously. This paper proposes by integrating compiler driven transformation and simulated annealing based optimization process for generating optimized low cost transient fault tolerant DSP core. The case study on FIR filter shows improved performance (in terms of reduced area and delay) of proposed approach in comparison to state-of-art transient fault tolerant approach.
2017-12-20
Yin, S., Bae, C., Kim, S. J., Seo, J. s.  2017.  Designing ECG-based physical unclonable function for security of wearable devices. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). :3509–3512.

As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.

2017-02-21
Liang Zhongyin, Huang Jianjun, Huang Jingxiong.  2015.  "Sub-sampled IFFT based compressive sampling". TENCON 2015 - 2015 IEEE Region 10 Conference. :1-4.

In this paper, a new approach based on Sub-sampled Inverse Fast Fourier Transform (SSIFFT) for efficiently acquiring compressive measurements is proposed, which is motivated by random filter based method and sub-sampled FFT. In our approach, to start with, we multiply the FFT of input signal and that of random-tap FIR filter in frequency domain and then utilize SSIFFT to obtain compressive measurements in the time domain. It requires less data storage and computation than the existing methods based on random filter. Moreover, it is suitable for both one-dimensional and two-dimensional signals. Experimental results show that the proposed approach is effective and efficient.

2015-05-04
Zurek, E.E., Gamarra, A.M.R., Escorcia, G.J.R., Gutierrez, C., Bayona, H., Perez, R., Garcia, X..  2014.  Spectral analysis techniques for acoustic fingerprints recognition. Image, Signal Processing and Artificial Vision (STSIVA), 2014 XIX Symposium on. :1-5.

This article presents results of the recognition process of acoustic fingerprints from a noise source using spectral characteristics of the signal. Principal Components Analysis (PCA) is applied to reduce the dimensionality of extracted features and then a classifier is implemented using the method of the k-nearest neighbors (KNN) to identify the pattern of the audio signal. This classifier is compared with an Artificial Neural Network (ANN) implementation. It is necessary to implement a filtering system to the acquired signals for 60Hz noise reduction generated by imperfections in the acquisition system. The methods described in this paper were used for vessel recognition.