Visible to the public Biblio

Filters: Keyword is FFT  [Clear All Filters]
2022-07-29
Sharma, Kavya, Chakravarti, Praveen Kumar, Sharma, Rohan, Parashar, Kanishq, Pal, Nisha.  2021.  A Review on Internet of Things Based Door Security. 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). :1—4.
{On considering workplace thefts as a major problem, there is a requirement of designing a vandal proof door hardware and locking mechanism for ensuring the security of our property. So the door lock system with extra security features with a user friendly cost is suggested in this paper. When a stranger comes at the door, he/she has to pass three security levels for unlocking the solenoid locks present at the door and if he fails to do so, the door will remain locked. These three levels are of three extraordinary security features as one of them is using Fingerprint sensor, second is using a knocking pattern, and the last lock is unlocked by the preset pin/pattern entered by the user. Since, in addition to these features, there is one more option for the case of appearing of guest at the door and that is the Image capturing using web-camera present at the door and here the owner of the house is able to unlock all the locks if he wants the guest to enter the home. This all will be monitored by Node MCU}.
2020-05-11
Liu, Weiyou, Liu, Xu, Di, Xiaoqiang, Qi, Hui.  2019.  A novel network intrusion detection algorithm based on Fast Fourier Transformation. 2019 1st International Conference on Industrial Artificial Intelligence (IAI). :1–6.
Deep learning techniques have been widely used in intrusion detection, but their application on convolutional neural networks (CNN) is still immature. The main challenge is how to represent the network traffic to improve performance of the CNN model. In this paper, we propose a network intrusion detection algorithm based on representation learning using Fast Fourier Transformation (FFT), which is first exploration that converts traffic to image by FFT to the best of our knowledge. Each traffic is converted to an image and then the intrusion detection problem is turned to image classification. The experiment results on NSL-KDD dataset show that the classification performence of the algorithm in the CNN model has obvious advantages compared with other algorithms.
2020-03-16
Rosa, Taras, Kaidan, Mykola, Gazda, Juraj, Bykovyy, Pavlo, Sapozhnyk, Grygoriy, Maksymyuk, Taras.  2019.  Scalable QAM Modulation for Physical Layer Security of Wireless Networks. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:1095–1098.
The rapid growth of the connected devices driven by Internet of Things (IoT) concept requires a complete rethinking of the conventional approaches for the network design. One of the key constraints of the IoT devices are their low capabilities in order to optimize energy consumption. On the other hand, many IoT applications require high level of data protection and privacy, which can be provided only by advanced cryptographic algorithms, which are not feasible for IoT devices. In this paper, we propose a scalable quadrature modulation aiming to solve the problem of secure communications at the physical layer. The key idea of the proposed approach is to transmit only part of information in way that allows target receiver to retrieve the complete information. Such approach allows to ensure the security of wireless channel, while reducing the overhead of advanced cryptographic algorithms.
2018-12-10
Khan, M., Reza, M. Q., Sirdeshmukh, S. P. S. M. A..  2017.  A prototype model development for classification of material using acoustic resonance spectroscopy. 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). :128–131.

In this work, a measurement system is developed based on acoustic resonance which can be used for classification of materials. Basically, the inspection methods based on acoustic, utilized for containers screening in the field, identification of defective pills hold high significance in the fields of health, security and protection. However, such techniques are constrained by costly instrumentation, offline analysis and complexities identified with transducer holder physical coupling. So a simple, non-destructive and amazingly cost effective technique in view of acoustic resonance has been formulated here for quick data acquisition and analysis of acoustic signature of liquids for their constituent identification and classification. In this system, there are two ceramic coated piezoelectric transducers attached at both ends of V-shaped glass, one is act as transmitter and another as receiver. The transmitter generates sound with the help of white noise generator. The pick up transducer on another end of the V-shaped glass rod detects the transmitted signal. The recording is being done with arduino interfaced to computer. The FFTs of recorded signals are being analyzed and the resulted resonant frequency observed for water, water+salt and water+sugar are 4.8 KHz, 6.8 KHz and 3.2 KHz respectively. The different resonant frequency in case different sample is being observed which shows that the developed prototype model effectively classifying the materials.

2017-03-07
Ruan, Wenjie, Sheng, Quan Z., Yang, Lei, Gu, Tao, Xu, Peipei, Shangguan, Longfei.  2016.  AudioGest: Enabling Fine-grained Hand Gesture Detection by Decoding Echo Signal. Proceedings of the 2016 {ACM} {International} {Joint} {Conference} on {Pervasive} and {Ubiquitous} {Computing}. :474–485.
Hand gesture is becoming an increasingly popular means of interacting with consumer electronic devices, such as mobile phones, tablets and laptops. In this paper, we present AudioGest, a device-free gesture recognition system that can accurately sense the hand in-air movement around user's devices. Compared to the state-of-the-art, AudioGest is superior in using only one pair of built-in speaker and microphone, without any extra hardware or infrastructure support and with no training, to achieve fine-grained hand detection. Our system is able to accurately recognize various hand gestures, estimate the hand in-air time, as well as average moving speed and waving range. We achieve this by transforming the device into an active sonar system that transmits inaudible audio signal and decodes the echoes of hand at its microphone. We address various challenges including cleaning the noisy reflected sound signal, interpreting the echo spectrogram into hand gestures, decoding the Doppler frequency shifts into the hand waving speed and range, as well as being robust to the environmental motion and signal drifting. We implement the proof-of-concept prototype in three different electronic devices and extensively evaluate the system in four real-world scenarios using 3,900 hand gestures that collected by five users for more than two weeks. Our results show that AudioGest can detect six hand gestures with an accuracy up to 96%, and by distinguishing the gesture attributions, it can provide up to 162 control commands for various applications.
2015-05-04
Zurek, E.E., Gamarra, A.M.R., Escorcia, G.J.R., Gutierrez, C., Bayona, H., Perez, R., Garcia, X..  2014.  Spectral analysis techniques for acoustic fingerprints recognition. Image, Signal Processing and Artificial Vision (STSIVA), 2014 XIX Symposium on. :1-5.

This article presents results of the recognition process of acoustic fingerprints from a noise source using spectral characteristics of the signal. Principal Components Analysis (PCA) is applied to reduce the dimensionality of extracted features and then a classifier is implemented using the method of the k-nearest neighbors (KNN) to identify the pattern of the audio signal. This classifier is compared with an Artificial Neural Network (ANN) implementation. It is necessary to implement a filtering system to the acquired signals for 60Hz noise reduction generated by imperfections in the acquisition system. The methods described in this paper were used for vessel recognition.