Visible to the public Biblio

Filters: Keyword is information-centric internet of things  [Clear All Filters]
2020-01-21
Shen, Qili, Wu, Jun, Li, Jianhua.  2019.  Edge Learning Based Green Content Distribution for Information-Centric Internet of Things. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :67–70.
Being the revolutionary future networking architecture, information-centric networking (ICN) conducts network distribution based on content, which is ideally suitable for Internet of things (IoT). With the rapid growth of network traffic, compared to the conventional IoT, information-centric Internet of things (IC-IoT) is expected to provide users with the better satisfaction of the network quality of service (QoS). However, due to IC-IoT requirements of low latency, large data volume, marginalization, and intelligent processing, it urgently needs an efficient content distribution system. In this paper, we propose an edge learning based green content distribution scheme for IC-IoT. We implement intelligent path selection based on decision tree and edge calculation. Moreover, we apply distributed coding based content transmission to enhance the speed and recovery capability of content. Meanwhile, we have verified the effectiveness and performance of this scheme based on a large number of simulation experiments. The work of this paper is of great significance to improve the efficiency and flexibility of content distribution in IC-IoT.
Cui, Liqun, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Wu, Yang.  2019.  NSTN: Name-Based Smart Tracking for Network Status in Information-Centric Internet of Things. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Internet of Things(IoT) is an important part of the new generation of information technology and an important stage of development in the era of informatization. As a next generation network, Information Centric Network (ICN) has been introduced into the IoT, leading to the content independence of IC-IoT. To manage the changing network conditions and diagnose the cause of anomalies within it, network operators must obtain and analyze network status information from monitoring tools. However, traditional network supervision method will not be applicable to IC-IoT centered on content rather than IP. Moreover, the surge in information volume will also bring about insufficient information distribution, and the data location in the traditional management information base is fixed and cannot be added or deleted. To overcome these problems, we propose a name-based smart tracking system to store network state information in the IC-IoT. Firstly, we design a new structure of management information base that records various network state information and changes its naming format. Secondly, we use a tracking method to obtain the required network status information. When the manager issues a status request, each data block has a defined data tracking table to record past requests, the location of the status data required can be located according to it. Thirdly, we put forward an adaptive network data location replacement strategy based on the importance of stored data blocks, so that the information with higher importance will be closer to the management center for more efficient acquisition. Simulation results indicate the feasibility of the proposed scheme.