Biblio
The cutting-edge biometric recognition systems extract distinctive feature vectors of biometric samples using deep neural networks to measure the amount of (dis-)similarity between two biometric samples. Studies have shown that personal information (e.g., health condition, ethnicity, etc.) can be inferred, and biometric samples can be reconstructed from those feature vectors, making their protection an urgent necessity. State-of-the-art biometrics protection solutions are based on homomorphic encryption (HE) to perform recognition over encrypted feature vectors, hiding the features and their processing while releasing the outcome only. However, this comes at the cost of those solutions' efficiency due to the inefficiency of HE-based solutions with a large number of multiplications; for (dis-)similarity measures, this number is proportional to the vector's dimension. In this paper, we tackle the HE performance bottleneck by freeing the two common (dis-)similarity measures, the cosine similarity and the squared Euclidean distance, from multiplications. Assuming normalized feature vectors, our approach pre-computes and organizes those (dis-)similarity measures into lookup tables. This transforms their computation into simple table-lookups and summation only. We study quantization parameters for the values in the lookup tables and evaluate performances on both synthetic and facial feature vectors for which we achieve a recognition performance identical to the non-tabularized baseline systems. We then assess their efficiency under HE and record runtimes between 28.95ms and 59.35ms for the three security levels, demonstrating their enhanced speed.
ISSN: 2474-9699
Efficient large-scale biometric identification is a challenging open problem in biometrics today. Adding biometric information protection by cryptographic techniques increases the computational workload even further. Therefore, this paper proposes an efficient and improved use of coefficient packing for homomorphically protected biometric templates, allowing for the evaluation of multiple biometric comparisons at the cost of one. In combination with feature dimensionality reduction, the proposed technique facilitates a quadratic computational workload reduction for biometric identification, while long-term protection of the sensitive biometric data is maintained throughout the system. In previous works on using coefficient packing, only a linear speed-up was reported. In an experimental evaluation on a public face database, efficient identification in the encrypted domain is achieved on off-the-shelf hardware with no loss in recognition performance. In particular, the proposed improved use of coefficient packing allows for a computational workload reduction down to 1.6% of a conventional homomorphically protected identification system without improved packing.