Biblio
Air-gapped networks are isolated from the Internet, since they store and process sensitive information. It has been shown that attackers can exfiltrate data from air-gapped networks by sending acoustic signals generated by computer speakers, however this type of covert channel relies on the existence of loudspeakers in the air-gapped environment. In this paper, we present CD-LEAK - a novel acoustic covert channel that works in constrained environments where loudspeakers are not available to the attacker. Malware installed on a compromised computer can maliciously generate acoustic signals via the optical CD/DVD drives. Binary information can then be modulated over the acoustic signals and be picked up by a nearby Internet connected receiver (e.g., a workstation, hidden microphone, smartphone, laptop, etc.). We examine CD/DVD drives and discuss their acoustical characteristics. We also present signal generation and detection, and data modulation and demodulation algorithms. Based on our proposed method, we developed a transmitter and receiver for PCs and smartphones, and provide the design and implementation details. We examine the channel and evaluate it on various optical drives. We also provide a set of countermeasures against this threat - which has been overlooked.
Conventional photoacoustic microscopy (PAM) involves detection of optically induced thermo-elastic waves using ultrasound transducers. This approach requires acoustic coupling and the spatial resolution is limited by the focusing properties of the transducer. We present an all-optical PAM approach that involved detection of the photoacoustically induced surface displacements using an adaptive, two-wave mixing interferometer. The interferometer consisted of a 532-nm, CW laser and a Bismuth Silicon Oxide photorefractive crystal (PRC) that was 5×5×5 mm3. The laser beam was expanded to 3 mm and split into two paths, a reference beam that passed directly through the PRC and a signal beam that was focused at the surface through a 100-X, infinity-corrected objective and returned to the PRC. The PRC matched the wave front of the reference beam to that of the signal beam for optimal interference. The interference of the two beams produced optical-intensity modulations that were correlated with surface displacements. A GHz-bandwidth photoreceiver, a low-noise 20-dB amplifier, and a 12-bit digitizer were employed for time-resolved detection of the surface-displacement signals. In combination with a 5-ns, 532-nm pump laser, the interferometric probe was employed for imaging ink patterns, such as a fingerprint, on a glass slide. The signal beam was focused at a reflective cover slip that was separated from the fingerprint by 5 mm of acoustic-coupling gel. A 3×5 mm2 area of the coverslip was raster scanned with 100-μm steps and surface-displacement signals at each location were averaged 20 times. Image reconstruction based on time reversal of the PA-induced displacement signals produced the photoacoustic image of the ink patterns. The reconstructed image of the fingerprint was consistent with its photograph, which demonstrated the ability of our system to resolve micron-scaled features at a depth of 5 mm.
This paper presents a novel and efficient audio signal recognition algorithm with limited computational complexity. As the audio recognition system will be used in real world environment where background noises are high, conventional speech recognition techniques are not directly applicable, since they have a poor performance in these environments. So here, we introduce a new audio recognition algorithm which is optimized for mechanical sounds such as car horn, telephone ring etc. This is a hybrid time-frequency approach which makes use of acoustic fingerprint for the recognition of audio signal patterns. The limited computational complexity is achieved through efficient usage of both time domain and frequency domain in two different processing phases, detection and recognition respectively. And the transition between these two phases is carried out through a finite state machine(FSM)model. Simulation results shows that the algorithm effectively recognizes audio signals within a noisy environment.