Visible to the public Biblio

Filters: Keyword is Audio detection  [Clear All Filters]
2022-12-09
Zeng, Ranran, Lin, Yue, Li, Xiaoyu, Wang, Lei, Yang, Jie, Zhao, Dexin, Su, Minglan.  2022.  Research on the Implementation of Real-Time Intelligent Detection for Illegal Messages Based on Artificial Intelligence Technology. 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS). :278—284.
In recent years, the detection of illegal and harmful messages which plays an significant role in Internet service is highly valued by the government and society. Although artificial intelligence technology is increasingly applied to actual operating systems, it is still a big challenge to be applied to systems that require high real-time performance. This paper provides a real-time detection system solution based on artificial intelligence technology. We first introduce the background of real-time detection of illegal and harmful messages. Second, we propose a complete set of intelligent detection system schemes for real-time detection, and conduct technical exploration and innovation in the media classification process including detection model optimization, traffic monitoring and automatic configuration algorithm. Finally, we carry out corresponding performance verification.
2015-05-04
Alias T, E., Naveen, N., Mathew, D..  2014.  A Novel Acoustic Fingerprint Method for Audio Signal Pattern Detection. Advances in Computing and Communications (ICACC), 2014 Fourth International Conference on. :64-68.

This paper presents a novel and efficient audio signal recognition algorithm with limited computational complexity. As the audio recognition system will be used in real world environment where background noises are high, conventional speech recognition techniques are not directly applicable, since they have a poor performance in these environments. So here, we introduce a new audio recognition algorithm which is optimized for mechanical sounds such as car horn, telephone ring etc. This is a hybrid time-frequency approach which makes use of acoustic fingerprint for the recognition of audio signal patterns. The limited computational complexity is achieved through efficient usage of both time domain and frequency domain in two different processing phases, detection and recognition respectively. And the transition between these two phases is carried out through a finite state machine(FSM)model. Simulation results shows that the algorithm effectively recognizes audio signals within a noisy environment.