Visible to the public Biblio

Filters: Keyword is UWSN  [Clear All Filters]
2022-03-23
Islam, Al Amin, Taher, Kazi Abu.  2021.  A Novel Authentication Mechanism for Securing Underwater Wireless Sensors from Sybil Attack. 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). :1—6.
Underwater Wireless Sensor Networks (UWSN) has vast application areas. Due to the unprotected nature, underwater security is a prime concern. UWSN becomes vulnerable to different attacks due to malicious nodes. Sybil attack is one of the major attacks in UWSN. Most of the proposed security methods are based on encryption and decryption which consumes resources of the sensor nodes. In this paper, a simple authentication mechanism is proposed for securing the UWSN from the Sybil attack. As the nodes have very less computation power and energy resources so this work is not followed any kind of encryption and decryption technique. An authentication process is designed in such a way that node engaged in communication authenticate neighboring nodes by node ID and the data stored in the cluster head. This work is also addressed sensor node compromisation issue through Hierarchical Fuzzy System (HFS) based trust management model. The trust management model has been simulated in Xfuzzy-3.5. After the simulation conducted, the proposed trust management mechanism depicts significant performance on detecting compromised nodes.
2021-02-22
Li, Y., Liu, Y., Wang, Y., Guo, Z., Yin, H., Teng, H..  2020.  Synergetic Denial-of-Service Attacks and Defense in Underwater Named Data Networking. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1569–1578.
Due to the harsh environment and energy limitation, maintaining efficient communication is crucial to the lifetime of Underwater Sensor Networks (UWSN). Named Data Networking (NDN), one of future network architectures, begins to be applied to UWSN. Although Underwater Named Data Networking (UNDN) performs well in data transmission, it still faces some security threats, such as the Denial-of-Service (DoS) attacks caused by Interest Flooding Attacks (IFAs). In this paper, we present a new type of DoS attacks, named as Synergetic Denial-of-Service (SDoS). Attackers synergize with each other, taking turns to reply to malicious interests as late as possible. SDoS attacks will damage the Pending Interest Table, Content Store, and Forwarding Information Base in routers with high concealment. Simulation results demonstrate that the SDoS attacks quadruple the increased network traffic compared with normal IFAs and the existing IFA detection algorithm in UNDN is completely invalid to SDoS attacks. In addition, we analyze the infection problem in UNDN and propose a defense method Trident based on carefully designed adaptive threshold, burst traffic detection, and attacker identification. Experiment results illustrate that Trident can effectively detect and resist both SDoS attacks and normal IFAs. Meanwhile, Trident can robustly undertake burst traffic and congestion.
2020-12-21
Qiao, G., Zhao, Y., Liu, S., Ahmed, N..  2020.  The Effect of Acoustic-Shell Coupling on Near-End Self-Interference Signal of In-Band Full-Duplex Underwater Acoustic Communication Modem. 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :606–610.
In-Band Full-Duplex (IBFD) Underwater Acoustic (UWA) communication technology plays a major role in enhancing the performance of Underwater acoustic sensor networks (UWSN). Self-Interference (SI) is one of the main inherent challenges affecting the performance of IBFD UWA communication. To reconstruct the SI signal and counteract the SI effect, this is important to estimate the short range channel through which the SI signal passes. Inaccurate estimation will result in the performance degradation of IBFD UWA communication. From the perspective of engineering implementation, we consider that the UWA communication modem shell has a significant influence on the short-range SI channel, which will limit the efficiency of self-interference cancellation in the analog domain to some degree. Therefore we utilize a simplified model to simulate the influence of the structure of the IBFD UWA communication modem on the receiving end. This paper studies the effect of acoustic-shell coupling on near-end self-interference signal of IBFD UWA communication modem. Some suggestions on the design of shell structure of IBFD UWA communication modem are given.
2020-10-26
Uyan, O. Gokhan, Gungor, V. Cagri.  2019.  Lifetime Analysis of Underwater Wireless Networks Concerning Privacy with Energy Harvesting and Compressive Sensing. 2019 27th Signal Processing and Communications Applications Conference (SIU). :1–4.
Underwater sensor networks (UWSN) are a division of classical wireless sensor networks (WSN), which are designed to accomplish both military and civil operations, such as invasion detection and underwater life monitoring. Underwater sensor nodes operate using the energy provided by integrated limited batteries, and it is a serious challenge to replace the battery under the water especially in harsh conditions with a high number of sensor nodes. Here, energy efficiency confronts as a very important issue. Besides energy efficiency, data privacy is another essential topic since UWSN typically generate delicate sensing data. UWSN can be vulnerable to silent positioning and listening, which is injecting similar adversary nodes into close locations to the network to sniff transmitted data. In this paper, we discuss the usage of compressive sensing (CS) and energy harvesting (EH) to improve the lifetime of the network whilst we suggest a novel encryption decision method to maintain privacy of UWSN. We also deploy a Mixed Integer Programming (MIP) model to optimize the encryption decision cases which leads to an improved network lifetime.
2020-03-02
Arifeen, Md Murshedul, Islam, Al Amin, Rahman, Md Mustafizur, Taher, Kazi Abu, Islam, Md.Maynul, Kaiser, M Shamim.  2019.  ANFIS based Trust Management Model to Enhance Location Privacy in Underwater Wireless Sensor Networks. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1–6.
Trust management is a promising alternative solution to different complex security algorithms for Underwater Wireless Sensor Networks (UWSN) applications due to its several resource constraint behaviour. In this work, we have proposed a trust management model to improve location privacy of the UWSN. Adaptive Neuro Fuzzy Inference System (ANFIS) has been exploited to evaluate trustworthiness of a sensor node. Also Markov Decision Process (MDP) has been considered. At each state of the MDP, a sensor node evaluates trust behaviour of forwarding node utilizing the FIS learning rules and selects a trusted node. Simulation has been conducted in MATLAB and simulation results show that the detection accuracy of trustworthiness is 91.2% which is greater than Knowledge Discovery and Data Mining (KDD) 99 intrusion detection based dataset. So, in our model 91.2% trustworthiness is necessary to be a trusted node otherwise it will be treated as a malicious or compromised node. Our proposed model can successfully eliminate the possibility of occurring any compromised or malicious node in the network.
2020-01-27
Persis, D. Jinil.  2019.  A Bi-objective Routing Model for Underwater Wireless Sensor Network. Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. :78–82.
Underwater wireless communication is a critical and challenging research area wherein acoustic signals are used to transfer data. The Underwater Wireless Sensor Network (UWSN) is used to transmit data sensed by the sensors in the sea bed to the surface sinks through intermediate nodes for seismic surveillance, border security and underwater environment monitoring applications. The nodes comprising of UWSN are battery operated and are subjected to failures leading to connectivity loss. And the propagation delay in sending the data in the form of acoustic signals is found to be high and as the depth increases the transmission delay also increases. Hence, routing in UWSN is a complex problem. The simulation experiments of the delay sensitive protocols are found to minimize the delay at the expense of network throughput which is not acceptable. The energy aware routing protocols on the other hand reduces energy consumption and routing overhead but has high delay involved in transmission. In this study, transmission delay and reliability estimation models are developed using which bi-objective routing model is proposed considering both delay and reliability in route selection. In the simulation studies, the bi-objective model reduced delay on an average by 9% and the reliability of the network is improved by 34% when compared to the delay sensitive and reliable routing strategies.