Visible to the public Biblio

Filters: Keyword is ultrasonic imaging  [Clear All Filters]
2023-06-22
Tiwari, Anurag, Srivastava, Vinay Kumar.  2022.  Integer Wavelet Transform and Dual Decomposition Based Image Watermarking scheme for Reliability of DICOM Medical Image. 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–6.
Image watermarking techniques provides security, reliability copyright protection for various multimedia contents. In this paper Integer Wavelet Transform Schur decomposition and Singular value decomposition (SVD) based image watermarking scheme is suggested for the integrity protection of dicom images. In the proposed technique 3-level Integer wavelet transform (IWT) is subjected into the Dicom ultrasound image of liver cover image and in HH sub-band Schur decomposition is applied. The upper triangular matrix obtained from Schur decomposition of HH sub-band is further processed with SVD to attain the singular values. The X-ray watermark image is pre-processed before embedding into cover image by applying 3-level IWT is applied into it and singular matrix of LL sub-band is embedded. The watermarked image is encrypted using Arnold chaotic encryption for its integrity protection. The performance of suggested scheme is tested under various attacks like filtering (median, average, Gaussian) checkmark (histogram equalization, rotation, horizontal and vertical flipping, contrast enhancement, gamma correction) and noise (Gaussian, speckle, Salt & Pepper Noise). The proposed technique provides strong robustness against various attacks and chaotic encryption provides integrity to watermarked image.
ISSN: 2687-7767
2022-12-07
Kawasaki, Shinnosuke, Yeh, Jia–Jun, Saccher, Marta, Li, Jian, Dekker, Ronald.  2022.  Bulk Acoustic Wave Based Mocrfluidic Particle Sorting with Capacitive Micromachined Ultrasonic Transducers. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS). :908—911.
The main limitation of acoustic particle separation for microfluidic application is its low sorting efficiency. This is due to the weak coupling of surface acoustic waves (SAWs) into the microchannel. In this work, we demonstrate bulk acoustic wave (BAW) particle sorting using capacitive micromachined ultrasonic transducers (CMUTs) for the first time. A collapsed mode CMUT was driven in air to generate acoustic pressure within the silicon substrate in the in-plane direction of the silicon die. This acoustic pressure was coupled into a water droplet, positioned at the side of the CMUT die, and measured with an optical hydrophone. By using a beam steering approach, the ultrasound generated from 32 CMUT elements were added in-phase to generate a maximum peak-to-peak pressure of 0.9 MPa. Using this pressure, 10 µm latex beads were sorted almost instantaneously.
2022-12-06
Tamburello, Marialaura, Caruso, Giuseppe, Giordano, Stefano, Adami, Davide, Ojo, Mike.  2022.  Edge-AI Platform for Realtime Wildlife Repelling. 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). :80-84.

In this paper, we present the architecture of a Smart Industry inspired platform designed for Agriculture 4.0 applications and, specifically, to optimize an ecosystem of SW and HW components for animal repelling. The platform implementation aims to obtain reliability and energy efficiency in a system aimed to detect, recognize, identify, and repel wildlife by generating specific ultrasound signals. The wireless sensor network is composed of OpenMote hardware devices coordinated on a mesh network based on the 6LoWPAN protocol, and connected to an FPGA-based board. The system, activated when an animal is detected, elaborates the data received from a video camera connected to FPGA-based hardware devices and then activates different ultrasonic jammers belonging to the OpenMotes network devices. This way, in real-time wildlife will be progressively moved away from the field to be preserved by the activation of specific ultrasonic generators. To monitor the daily behavior of the wildlife, the ecosystem is expanded using a time series database running on a Cloud platform.

2022-02-10
Wang, Qianqian, Wang, Ben, Yu, Jiangfan, Schweizer, Kathrin, Nelson, Bradley J., Zhang, Li.  2020.  Reconfigurable Magnetic Microswarm for Thrombolysis under Ultrasound Imaging. 2020 IEEE International Conference on Robotics and Automation (ICRA). :10285–10291.
We propose thrombolysis using a magnetic nanoparticle microswarm with tissue plasminogen activator (tPA) under ultrasound imaging. The microswarm is generated in blood using an oscillating magnetic field and can be navigated with locomotion along both the long and short axis. By modulating the input field, the aspect ratio of the microswarm can be reversibly tuned, showing the ability to adapt to different confined environments. Simulation results indicate that both in-plane and out-of-plane fluid convection are induced around the microswarm, which can be further enhanced by tuning the aspect ratio of the microswarm. Under ultrasound imaging, the microswarm is navigated in a microchannel towards a blood clot and deformed to obtain optimal lysis. Experimental results show that the lysis rate reaches -0.1725 ± 0.0612 mm3/min in the 37°C blood environment under the influence of the microswarm-induced fluid convection and tPA. The lysis rate is enhanced 2.5-fold compared to that without the microswarm (-0.0681 ± 0.0263 mm3/min). Our method provides a new strategy to increase the efficiency of thrombolysis by applying microswarm-induced fluid convection, indicating that swarming micro/nanorobots have the potential to act as effective tools towards targeted therapy.
ISSN: 2577-087X
2020-09-14
Quang-Huy, Tran, Nguyen, Van Dien, Nguyen, Van Dung, Duc-Tan, Tran.  2019.  Density Imaging Using a Compressive Sampling DBIM approach. 2019 International Conference on Advanced Technologies for Communications (ATC). :160–163.
Density information has been used as a property of sound to restore objects in a quantitative manner in ultrasound tomography based on backscatter theory. In the traditional method, the authors only study the distorted Born iterative method (DBIM) to create density images using Tikhonov regularization. The downside is that the image quality is still low, the resolution is low, the convergence rate is not high. In this paper, we study the DBIM method to create density images using compressive sampling technique. With compressive sampling technique, the probes will be randomly distributed on the measurement system (unlike the traditional method, the probes are evenly distributed on the measurement system). This approach uses the l1 regularization to restore images. The proposed method will give superior results in image recovery quality, spatial resolution. The limitation of this method is that the imaging time is longer than the one in the traditional method, but the less number of iterations is used in this method.
2020-08-03
Iula, Antonio, Micucci, Monica.  2019.  Palmprint recognition based on ultrasound imaging. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :621–624.
Biometric recognition systems based on ultrasound images have been investigated for several decades, and nowadays ultrasonic fingerprint sensors are fully integrated in portable devices. Main advantage of the Ultrasound over other technologies are the possibility to collect 3D images, allowing to gain information on under-skin features, which improve recognition accuracy and resistance to spoofing. Also, ultrasound images are not sensible to several skin contaminations, humidity and not uniform ambient illumination. An ultrasound system, able to acquire 3D images of the human palm has been recently proposed. In this work, a recognition procedure based on 2D palmprint images collected with this system is proposed and evaluated through verification experiments carried out on a home made database composed of 141 samples collected from 24 users. Perspective of the proposed method by upgrading the recognition procedure to provide a 3D template able to accounts for palm lines' depth are finally highlighted and discussed.
2018-01-10
Kuo, J., Lal, A..  2017.  Wideband material detection for spoof resistance in GHz ultrasonic fingerprint sensing. 2017 IEEE International Ultrasonics Symposium (IUS). :1–1.
One of the primary motivations for using ultrasound reflectometry for fingerprint imaging is the promise of increased spoof resistance over conventional optical or capacitive sensing approaches due to the ability for ultrasound to determine the elastic impedance of the imaged material. A fake 3D printed plastic finger can therefore be easily distinguished from a real finger. However, ultrasonic sensors are still vulnerable to materials that are similar in impedance to tissue, such as water or rubber. Previously we demonstrated an ultrasonic fingerprint reader operating with 1.3GHz ultrasound based on pulse echo impedance imaging on the backside silicon interface. In this work, we utilize the large bandwidth of these sensors to differentiate between a finger and materials with similar impedances using the frequency response of elastic impedance obtained by transducer excitation with a wideband RF chirp signal. The reflected signal is a strong function of impedance mismatch and absorption [Hoople 2015].
2017-12-20
Matsuzaki, H., Osaki, T., Kawaguchi, K., Takagi, S., Ichiyanagi, M., Unga, J., Suzuki, R., Maruyama, K., Azuma, T..  2017.  Behavior of the oscillating microbubble clusters trapped in focused ultrasound field. 2017 IEEE International Ultrasonics Symposium (IUS). :1–4.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few ({\textbackslash}textless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- {\textbackslash}textbar{\textbackslash}textbar

2015-05-04
Severin, F., Baradarani, A., Taylor, J., Zhelnakov, S., Maev, R..  2014.  Auto-adjustment of image produced by multi-transducer ultrasonic system. Ultrasonics Symposium (IUS), 2014 IEEE International. :1944-1947.

Acoustic microscopy is characterized by relatively long scanning time, which is required for the motion of the transducer over the entire scanning area. This time may be reduced by using a multi-channel acoustical system which has several identical transducers arranged as an array and is mounted on a mechanical scanner so that each transducer scans only a fraction of the total area. The resulting image is formed as a combination of all acquired partial data sets. The mechanical instability of the scanner, as well as the difference in parameters of the individual transducers causes a misalignment of the image fractures. This distortion may be partially compensated for by the introduction of constant or dynamical signal leveling and data shift procedures. However, a reduction of the random instability component requires more advanced algorithms, including auto-adjustment of processing parameters. The described procedure was implemented into the prototype of an ultrasonic fingerprint reading system. The specialized cylindrical scanner provides a helical spiral lens trajectory which eliminates repeatable acceleration, reduces vibration and allows constant data flow on maximal rate. It is equipped with an array of four spherically focused 50 MHz acoustic lenses operating in pulse-echo mode. Each transducer is connected to a separate channel including pulser, receiver and digitizer. The output 3D data volume contains interlaced B-scans coming from each channel. Afterward, data processing includes pre-determined procedures of constant layer shift in order to compensate for the transducer displacement, phase shift and amplitude leveling for compensation of variation in transducer characteristics. Analysis of statistical parameters of individual scans allows adaptive eliminating of the axial misalignment and mechanical vibrations. Further 2D correlation of overlapping partial C-scans will realize an interpolative adjustment which essentially improves the output image. Implementation of this adaptive algorithm into a data processing sequence allows us to significantly reduce misreading due to hardware noise and finger motion during scanning. The system provides a high quality acoustic image of the fingerprint including different levels of information: fingerprint pattern, sweat porous locations, internal dermis structures. These additional features can effectively facilitate fingerprint based identification. The developed principles and algorithm implementations allow improved quality, stability and reliability of acoustical data obtained with the mechanical scanner, accommodating several transducers. General principles developed during this work can be applied to other configurations of advanced ultrasonic systems designed for various biomedical and NDE applications. The data processing algorithm, developed for a specific biometric task, can be adapted for the compensation of mechanical imperfections of the other devices.