Visible to the public Biblio

Filters: Keyword is authentication systems  [Clear All Filters]
2020-10-12
Marrone, Stefano, Sansone, Carlo.  2019.  An Adversarial Perturbation Approach Against CNN-based Soft Biometrics Detection. 2019 International Joint Conference on Neural Networks (IJCNN). :1–8.
The use of biometric-based authentication systems spread over daily life consumer electronics. Over the years, researchers' interest shifted from hard (such as fingerprints, voice and keystroke dynamics) to soft biometrics (such as age, ethnicity and gender), mainly by using the latter to improve the authentication systems effectiveness. While newer approaches are constantly being proposed by domain experts, in the last years Deep Learning has raised in many computer vision tasks, also becoming the current state-of-art for several biometric approaches. However, since the automatic processing of data rich in sensitive information could expose users to privacy threats associated to their unfair use (i.e. gender or ethnicity), in the last years researchers started to focus on the development of defensive strategies in the view of a more secure and private AI. The aim of this work is to exploit Adversarial Perturbation, namely approaches able to mislead state-of-the-art CNNs by injecting a suitable small perturbation over the input image, to protect subjects against unwanted soft biometrics-based identification by automatic means. In particular, since ethnicity is one of the most critical soft biometrics, as a case of study we will focus on the generation of adversarial stickers that, once printed, can hide subjects ethnicity in a real-world scenario.
2020-09-04
Glory, Farhana Zaman, Ul Aftab, Atif, Tremblay-Savard, Olivier, Mohammed, Noman.  2019.  Strong Password Generation Based On User Inputs. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0416—0423.
Every person using different online services is concerned with the security and privacy for protecting individual information from the intruders. Many authentication systems are available for the protection of individuals' data, and the password authentication system is one of them. Due to the increment of information sharing, internet popularization, electronic commerce transactions, and data transferring, both password security and authenticity have become an essential and necessary subject. But it is also mandatory to ensure the strength of the password. For that reason, all cyber experts recommend intricate password patterns. But most of the time, the users forget their passwords because of those complicated patterns. In this paper, we are proposing a unique algorithm that will generate a strong password, unlike other existing random password generators. This password will he based on the information, i.e. (some words and numbers) provided by the users so that they do not feel challenged to remember the password. We have tested our system through various experiments using synthetic input data. We also have checked our generator with four popular online password checkers to verify the strength of the produced passwords. Based on our experiments, the reliability of our generated passwords is entirely satisfactory. We also have examined that our generated passwords can defend against two password cracking attacks named the "Dictionary attack" and the "Brute Force attack". We have implemented our system in Python programming language. In the near future, we have a plan to extend our work by developing an online free to use user interface. The passwords generated by our system are not only user-friendly but also have achieved most of the qualities of being strong as well as non- crackable passwords.
2020-03-02
Amrutiya, Varun, Jhamb, Siddhant, Priyadarshi, Pranjal, Bhatia, Ashutosh.  2019.  Trustless Two-Factor Authentication Using Smart Contracts in Blockchains. 2019 International Conference on Information Networking (ICOIN). :66–71.
Two-factor authentication (2FA) is widely prevalent in banking, emails and virtual private networks (VPN) connections or in accessing any secure web service. In 2FA, to get authenticated the users are expected to provide additional secret information along with the password. Typically, this secret information (tokens) is generated by a centralized trusted third party upon receiving an authentication request from users. Thus, this additional layer of security comes at the cost of inherently trusting the third party for their services. The security of such authentication systems is always under the threat of the trusted party is being compromised. In this paper, we propose a novel approach to make server authentication even more secure by building 2FA over the blockchain platform which is distributed in nature. The proposed solution does not require any trusted third party between claimant (user) and the verifier (server) for the authentication purpose. To demonstrate the idea of using blockchain technology for 2FA, we have added an extra layer of security component to the OpenSSH server a widely used application for Secure Shell (SSH) protocol.
2020-01-28
Bernardi, Mario Luca, Cimitile, Marta, Martinelli, Fabio, Mercaldo, Francesco.  2019.  Keystroke Analysis for User Identification Using Deep Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN). :1–8.

The current authentication systems based on password and pin code are not enough to guarantee attacks from malicious users. For this reason, in the last years, several studies are proposed with the aim to identify the users basing on their typing dynamics. In this paper, we propose a deep neural network architecture aimed to discriminate between different users using a set of keystroke features. The idea behind the proposed method is to identify the users silently and continuously during their typing on a monitored system. To perform such user identification effectively, we propose a feature model able to capture the typing style that is specific to each given user. The proposed approach is evaluated on a large dataset derived by integrating two real-world datasets from existing studies. The merged dataset contains a total of 1530 different users each writing a set of different typing samples. Several deep neural networks, with an increasing number of hidden layers and two different sets of features, are tested with the aim to find the best configuration. The final best classifier scores a precision equal to 0.997, a recall equal to 0.99 and an accuracy equal to 99% using an MLP deep neural network with 9 hidden layers. Finally, the performances obtained by using the deep learning approach are also compared with the performance of traditional decision-trees machine learning algorithm, attesting the effectiveness of the deep learning-based classifiers in the domain of keystroke analysis.