Visible to the public Biblio

Filters: Keyword is hyperspectral image classification  [Clear All Filters]
2020-07-03
Li, Feiyan, Li, Wei, Huo, Hongtao, Ran, Qiong.  2019.  Decision Fusion Based on Joint Low Rank and Sparse Component for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :401—404.

Sparse and low rank matrix decomposition is a method that has recently been developed for estimating different components of hyperspectral data. The rank component is capable of preserving global data structures of data, while a sparse component can select the discriminative information by preserving details. In order to take advantage of both, we present a novel decision fusion based on joint low rank and sparse component (DFJLRS) method for hyperspectral imagery in this paper. First, we analyzed the effects of different components on classification results. Then a novel method adopts a decision fusion strategy which combines a SVM classifier with the information provided by joint sparse and low rank components. With combination of the advantages, the proposed method is both representative and discriminative. The proposed algorithm is evaluated using several hyperspectral images when compared with traditional counterparts.

2020-06-12
Li, Wenyue, Yin, Jihao, Han, Bingnan, Zhu, Hongmei.  2019.  Generative Adversarial Network with Folded Spectrum for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :883—886.

Hyperspectral image (HSIs) with abundant spectral information but limited labeled dataset endows the rationality and necessity of semi-supervised spectral-based classification methods. Where, the utilizing approach of spectral information is significant to classification accuracy. In this paper, we propose a novel semi-supervised method based on generative adversarial network (GAN) with folded spectrum (FS-GAN). Specifically, the original spectral vector is folded to 2D square spectrum as input of GAN, which can generate spectral texture and provide larger receptive field over both adjacent and non-adjacent spectral bands for deep feature extraction. The generated fake folded spectrum, the labeled and unlabeled real folded spectrum are then fed to the discriminator for semi-supervised learning. A feature matching strategy is applied to prevent model collapse. Extensive experimental comparisons demonstrate the effectiveness of the proposed method.

2020-02-10
Zhan, Ying, Qin, Jin, Huang, Tao, Wu, Kang, Hu, Dan, Zhao, Zhengang, Wang, Yuntao, Cao, Ying, Jiao, RunCheng, Medjadba, Yasmine et al..  2019.  Hyperspectral Image Classification Based on Generative Adversarial Networks with Feature Fusing and Dynamic Neighborhood Voting Mechanism. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :811–814.

Classifying Hyperspectral images with few training samples is a challenging problem. The generative adversarial networks (GAN) are promising techniques to address the problems. GAN constructs an adversarial game between a discriminator and a generator. The generator generates samples that are not distinguishable by the discriminator, and the discriminator determines whether or not a sample is composed of real data. In this paper, by introducing multilayer features fusion in GAN and a dynamic neighborhood voting mechanism, a novel algorithm for HSIs classification based on 1-D GAN was proposed. Extracting and fusing multiple layers features in discriminator, and using a little labeled samples, we fine-tuned a new sample 1-D CNN spectral classifier for HSIs. In order to improve the accuracy of the classification, we proposed a dynamic neighborhood voting mechanism to classify the HSIs with spatial features. The obtained results show that the proposed models provide competitive results compared to the state-of-the-art methods.