Visible to the public Biblio

Filters: Keyword is graph convolutional network  [Clear All Filters]
2023-02-24
Coleman, Jared, Kiamari, Mehrdad, Clark, Lillian, D'Souza, Daniel, Krishnamachari, Bhaskar.  2022.  Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1070—1075.
Existing solutions for scheduling arbitrarily complex distributed applications on networks of computational nodes are insufficient for scenarios where the network topology is changing rapidly. New Internet of Things (IoT) domains like the Internet of Robotic Things (IoRT) and the Internet of Battlefield Things (IoBT) demand solutions that are robust and efficient in environments that experience constant and/or rapid change. In this paper, we demonstrate how recent advancements in machine learning (in particular, in graph convolutional neural networks) can be leveraged to solve the task scheduling problem with decent performance and in much less time than traditional algorithms.
2022-04-21
Fang, Yong, Zhang, Yuchi, Huang, Cheng.  2020.  CyberEyes: Cybersecurity Entity Recognition Model Based on Graph Convolutional Network. The Computer Journal. 64:1215–1225.
Cybersecurity has gradually become the public focus between common people and countries with the high development of Internet technology in daily life. The cybersecurity knowledge analysis methods have achieved high evolution with the help of knowledge graph technology, especially a lot of threat intelligence information could be extracted with fine granularity. But named entity recognition (NER) is the primary task for constructing security knowledge graph. Traditional NER models are difficult to determine entities that have a complex structure in the field of cybersecurity, and it is difficult to capture non-local and non-sequential dependencies. In this paper, we propose a cybersecurity entity recognition model CyberEyes that uses non-local dependencies extracted by graph convolutional neural networks. The model can capture both local context and graph-level non-local dependencies. In the evaluation experiments, our model reached an F1 score of 90.28% on the cybersecurity corpus under the gold evaluation standard for NER, which performed better than the 86.49% obtained by the classic CNN-BiLSTM-CRF model.
Conference Name: The Computer Journal
2021-02-08
Chen, J., Liao, S., Hou, J., Wang, K., Wen, J..  2020.  GST-GCN: A Geographic-Semantic-Temporal Graph Convolutional Network for Context-aware Traffic Flow Prediction on Graph Sequences. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1604–1609.
Traffic flow prediction is an important foundation for intelligent transportation systems. The traffic data are generated from a traffic network and evolved dynamically. So spatio-temporal relation exploration plays a support role on traffic data analysis. Most researches focus on spatio-temporal information fusion through a convolution operation. To the best of our knowledge, this is the first work to suggest that it is necessary to distinguish the two aspects of spatial correlations and propose the two types of spatial graphs, named as geographic graph and semantic graph. Then two novel stereo convolutions with irregular acceptive fields are proposed. The geographic-semantic-temporal contexts are dynamically jointly captured through performing the proposed convolutions on graph sequences. We propose a geographic-semantic-temporal graph convolutional network (GST-GCN) model that combines our graph convolutions and GRU units hierarchically in a unified end-to-end network. The experiment results on the Caltrans Performance Measurement System (PeMS) dataset show that our proposed model significantly outperforms other popular spatio-temporal deep learning models and suggest the effectiveness to explore geographic-semantic-temporal dependencies on deep learning models for traffic flow prediction.
2020-02-10
Cheng, Xiao, Wang, Haoyu, Hua, Jiayi, Zhang, Miao, Xu, Guoai, Yi, Li, Sui, Yulei.  2019.  Static Detection of Control-Flow-Related Vulnerabilities Using Graph Embedding. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS). :41–50.

Static vulnerability detection has shown its effectiveness in detecting well-defined low-level memory errors. However, high-level control-flow related (CFR) vulnerabilities, such as insufficient control flow management (CWE-691), business logic errors (CWE-840), and program behavioral problems (CWE-438), which are often caused by a wide variety of bad programming practices, posing a great challenge for existing general static analysis solutions. This paper presents a new deep-learning-based graph embedding approach to accurate detection of CFR vulnerabilities. Our approach makes a new attempt by applying a recent graph convolutional network to embed code fragments in a compact and low-dimensional representation that preserves high-level control-flow information of a vulnerable program. We have conducted our experiments using 8,368 real-world vulnerable programs by comparing our approach with several traditional static vulnerability detectors and state-of-the-art machine-learning-based approaches. The experimental results show the effectiveness of our approach in terms of both accuracy and recall. Our research has shed light on the promising direction of combining program analysis with deep learning techniques to address the general static analysis challenges.