Visible to the public Biblio

Filters: Keyword is Situation Prediction  [Clear All Filters]
2022-03-08
Kai, Yun, Qiang, Huang, Yixuan, Ma.  2021.  Construction of Network Security Perception System Using Elman Neural Network. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :187—190.
The purpose of the study is to improve the security of the network, and make the state of network security predicted in advance. First, the theory of neural networks is studied, and its shortcomings are analyzed by the standard Elman neural network. Second, the layers of the feedback nodes of the Elman neural network are improved according to the problems that need to be solved. Then, a network security perception system based on GA-Elman (Genetic Algorithm-Elman) neural network is proposed to train the network by global search method. Finally, the perception ability is compared and analyzed through the model. The results show that the model can accurately predict network security based on the experimental charts and corresponding evaluation indexes. The comparative experiments show that the GA-Elman neural network security perception system has a better prediction ability. Therefore, the model proposed can be used to predict the state of network security and provide early warnings for network security administrators.
2020-08-07
Liu, Donglan, Zhang, Hao, Yu, Hao, Liu, Xin, Zhao, Yong, Lv, Guodong.  2019.  Research and Application of APT Attack Defense and Detection Technology Based on Big Data Technology. 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC). :1—4.
In order to excavate security threats in power grid by making full use of heterogeneous data sources in power information system, this paper proposes APT (Advanced Persistent Threat) attack detection sandbox technology and active defense system based on big data analysis technology. First, the file is restored from the mirror traffic and executed statically. Then, sandbox execution was carried out to introduce analysis samples into controllable virtual environment, and dynamic analysis and operation samples were conducted. Through analyzing the dynamic processing process of samples, various known and unknown malicious code, APT attacks, high-risk Trojan horses and other network security risks were comprehensively detected. Finally, the threat assessment of malicious samples is carried out and visualized through the big data platform. The results show that the method proposed in this paper can effectively warn of unknown threats, improve the security level of system data, have a certain active defense ability. And it can effectively improve the speed and accuracy of power information system security situation prediction.
2020-05-08
Fu, Tian, Lu, Yiqin, Zhen, Wang.  2019.  APT Attack Situation Assessment Model Based on optimized BP Neural Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :2108—2111.
In this paper, it first analyzed the characteristics of Advanced Persistent Threat (APT). according to APT attack, this paper established an BP neural network optimized by improved adaptive genetic algorithm to predict the security risk of nodes in the network. and calculated the path of APT attacks with the maximum possible attack. Finally, experiments verify the effectiveness and correctness of the algorithm by simulating attacks. Experiments show that this model can effectively evaluate the security situation in the network, For the defenders to adopt effective measures defend against APT attacks, thus improving the security of the network.
2020-02-10
Gao, Jian, Bai, Huifeng, Wang, Dongshan, Wang, Licheng, Huo, Chao, Hou, Yingying.  2019.  Rapid Security Situation Prediction of Smart Grid Based on Markov Chain. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :2386–2389.

Based on Markov chain analysis method, the situation prediction of smart grid security and stability can be judged in this paper. First component state transition probability matrix and component state prediction were defined. A fast derivation method of Markov state transition probability matrix using in system state prediction was proposed. The Matlab program using this method was compiled to analyze and obtain the future state probability distribution of grid system. As a comparison the system state distribution was simulated based on sequential Monte Carlo method, which was in good agreement with the state transition matrix, and the validity of the method was verified. Furthermore, the situation prediction of the six-node example was analyzed, which provided an effective prediction and analysis tool for the security situation.