Biblio
It is necessary to improve the safety of the underwater acoustic sensor networks (UASNs) since it is mostly used in the military industry. Specific emitter identification is the process of identifying different transmitters based on the radio frequency fingerprint extracted from the received signal. The sonar transmitter is a typical low-frequency radiation source and is an important part of the UASNs. Class D power amplifier, a typical nonlinear amplifier, is usually used in sonar transmitters. The inherent nonlinearity of power amplifiers provides fingerprint features that can be distinguished without transmitters for specific emitter recognition. First, the nonlinearity of the sonar transmitter is studied in-depth, and the nonlinearity of the power amplifier is modeled and its nonlinearity characteristics are analyzed. After obtaining the nonlinear model of an amplifier, a similar amplifier in practical application is obtained by changing its model parameters as the research object. The output signals are collected by giving the same input of different models, and, then, the output signals are extracted and classified. In this paper, the memory polynomial model is used to model the amplifier. The power spectrum features of the output signals are extracted as fingerprint features. Then, the dimensionality of the high-dimensional features is reduced. Finally, the classifier is used to recognize the amplifier. The experimental results show that the individual sonar transmitter can be well identified by using the nonlinear characteristics of the signal. By this way, this method can enhance the communication safety of the UASNs.
The Global Positioning System (GPS) can determine the position of any person or object on earth based on satellite signals. But when inside the building, the GPS cannot receive signals, the indoor positioning system will determine the precise position. How to achieve more precise positioning is the difficulty of an indoor positioning system now. In this paper, we proposed an ultra-wideband fingerprinting positioning method based on a convolutional neural network (CNN), and we collect the dataset in a room to test the model, then compare our method with the existing method. In the experiment, our method can reach an accuracy of 98.36%. Compared with other fingerprint positioning methods our method has a great improvement in robustness. That results show that our method has good practicality while achieves higher accuracy.
This paper investigates the impact of authentication on effective capacity (EC) of an underwater acoustic (UWA) channel. Specifically, the UWA channel is under impersonation attack by a malicious node (Eve) present in the close vicinity of the legitimate node pair (Alice and Bob); Eve tries to inject its malicious data into the system by making Bob believe that she is indeed Alice. To thwart the impersonation attack by Eve, Bob utilizes the distance of the transmit node as the feature/fingerprint to carry out feature-based authentication at the physical layer. Due to authentication at Bob, due to lack of channel knowledge at the transmit node (Alice or Eve), and due to the threshold-based decoding error model, the relevant dynamics of the considered system could be modelled by a Markov chain (MC). Thus, we compute the state-transition probabilities of the MC, and the moment generating function for the service process corresponding to each state. This enables us to derive a closed-form expression of the EC in terms of authentication parameters. Furthermore, we compute the optimal transmission rate (at Alice) through gradient-descent (GD) technique and artificial neural network (ANN) method. Simulation results show that the EC decreases under severe authentication constraints (i.e., more false alarms and more transmissions by Eve). Simulation results also reveal that the (optimal transmission rate) performance of the ANN technique is quite close to that of the GTJ method.
With wide applications like surveillance and imaging, securing underwater acoustic Mobile Ad-hoc NETworks (MANET) becomes a double-edged sword for oceanographic operations. Underwater acoustic MANET inherits vulnerabilities from 802.11-based MANET which renders traditional cryptographic approaches defenseless. A Trust Management Framework (TMF), allowing maintained confidence among participating nodes with metrics built from their communication activities, promises secure, efficient and reliable access to terrestrial MANETs. TMF cannot be directly applied to the underwater environment due to marine characteristics that make it difficult to differentiate natural turbulence from intentional misbehavior. This work proposes a trust model to defend underwater acoustic MANETs against attacks using a machine learning method with carefully chosen communication metrics, and a cloud model to address the uncertainty of trust in harsh underwater environments. By integrating the trust framework of communication with the cloud model to combat two kinds of uncertainties: fuzziness and randomness, trust management is greatly improved for underwater acoustic MANETs.
In this paper, we propose a theoretical framework to investigate the eavesdropping behavior in underwater acoustic sensor networks. In particular, we quantify the eavesdropping activities by the eavesdropping probability. Our derived results show that the eavesdropping probability heavily depends on acoustic signal frequency, underwater acoustic channel characteristics (such as spreading factor and wind speed) and different hydrophones (such as isotropic hydrophones and array hydrophones). Simulation results have further validate the effectiveness and the accuracy of our proposed model.
Underwater acoustic networks is an enabling technology for a range of applications such as mine countermeasures, intelligence and reconnaissance. Common for these applications is a need for robust information distribution while minimizing energy consumption. In terrestrial wireless networks topology information is often used to enhance the efficiency of routing, in terms of higher capacity and less overhead. In this paper we asses the effects of topology information on routing in underwater acoustic networks. More specifically, the interplay between long propagation delays, contention-based channels access and dissemination of varying degrees of topology information is investigated. The study is based on network simulations of a number of network protocols that make use of varying amounts of topology information. The results indicate that, in the considered scenario, relying on local topology information to reduce retransmissions may have adverse effects on the reliability. The difficult channel conditions and the contention-based channels access methods create a need for an increased amount of diversity, i.e., more retransmissions. In the scenario considered, an opportunistic flooding approach is a better, both in terms of robustness and energy consumption.
In this work, a new fingerprinting-based localization algorithm is proposed for an underwater medium by utilizing ultra-wideband (UWB) signals. In many conventional underwater systems, localization is accomplished by utilizing acoustic waves. On the other hand, electromagnetic waves haven't been employed for underwater localization due to the high attenuation of the signal in water. However, it is possible to use UWB signals for short-range underwater localization. In this work, the feasibility of performing localization for an underwater medium is illustrated by utilizing a fingerprinting-based localization approach. By employing the concept of compressive sampling, we propose a sparsity-based localization method for which we define a system model exploiting the spatial sparsity.