Visible to the public Biblio

Filters: Keyword is Cryptocurrency security  [Clear All Filters]
2020-09-04
Ichsani, Yuditha, Deyani, Resisca Audia, Bahaweres, Rizal Broer.  2019.  The Cryptocurrency Simulation using Elliptic Curve Cryptography Algorithm in Mining Process from Normal, Failed, and Fake Bitcoin Transactions. 2019 7th International Conference on Cyber and IT Service Management (CITSM). 7:1—8.
On each cryptocurrency transaction, a high-level security is needed to protect user data as well as data on the transaction. At this stage, it takes the appropriate algorithm in securing transactions with more efficient processing time. The Elliptic Curve Cryptography (ECC) is one of the cryptography algorithms which has high-level security, and ECC is often compared with the Rivest, Shamir, and Adleman (RSA) algorithm because it has a security level that is almost the same but has some differences that make ECC is superior compared to the RSA algorithm, so that the ECC algorithm can optimize cryptocurrency security in the transaction process. The purpose of this study is to simulate the bitcoin transactions using cryptography algorithms. This study uses the ECC algorithm as the algorithm ECDH and ECDSA key exchange as the algorithm for signing and verifying. The comparison results of ECC and RSA processing time is 1:25, so the ECC is more efficient. The total processing time of ECC is 0,006 seconds and RSA is 0,152 seconds. The researcher succeeded to implement the ECC algorithm as securing algorithms in mining process of 3 scenarios, normal, failed, and fake bitcoin transactions.
2020-02-10
Taher, Kazi Abu, Nahar, Tahmin, Hossain, Syed Akhter.  2019.  Enhanced Cryptocurrency Security by Time-Based Token Multi-Factor Authentication Algorithm. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :308–312.
A noble multi-factor authentication (MFA) algorithm is developed for the security enhancement of the Cryptocurrency (CR). The main goal of MFA is to set up extra layer of safeguard while seeking access to a targets such as physical location, computing device, network or database. MFA security scheme requires more than one method for the validation from commutative family of credentials to verify the user for a transaction. MFA can reduce the risk of using single level password authentication by introducing additional factors of authentication. MFA can prevent hackers from gaining access to a particular account even if the password is compromised. The superfluous layer of security introduced by MFA offers additional security to a user. MFA is implemented by using time-based onetime password (TOTP) technique. For logging to any entity with MFA enabled, the user first needs username and password, as a second factor, the user then needs the MFA token to virtually generate a TOTP. It is found that MFA can provide a better means of secured transaction of CR.