Biblio
Filters: Keyword is grid resilience [Clear All Filters]
Cyber-Resilience Enhancement of PMU Networks Using Software-Defined Networking. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
.
2020. Phasor measurement unit (PMU) networks are increasingly deployed to offer timely and high-precision measurement of today's highly interconnected electric power systems. To enhance the cyber-resilience of PMU networks against malicious attacks and system errors, we develop an optimization-based network management scheme based on the software-defined networking (SDN) communication infrastructure to recovery PMU network connectivity and restore power system observability. The scheme enables fast network recovery by optimizing the path generation and installation process, and moreover, compressing the SDN rules to be installed on the switches. We develop a prototype system and perform system evaluation in terms of power system observability, recovery speed, and rule compression using the IEEE 30-bus system and IEEE 118-bus system.
Web-Based Platform for Evaluation of Resilient and Transactive Smart-Grids. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
.
2019. Today's smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks.