Visible to the public Biblio

Filters: Keyword is Trusted Component  [Clear All Filters]
2020-03-02
Serpanos, Dimitrios, Stachoulis, Dimitrios.  2019.  Secure Memory for Embedded Tamper-Proof Systems. 2019 14th International Conference on Design Technology of Integrated Systems In Nanoscale Era (DTIS). :1–4.

Data leakage and disclosure to attackers is a significant problem in embedded systems, considering the ability of attackers to get physical access to the systems. We present methods to protect memory data leakage in tamper-proof embedded systems. We present methods that exploit memory supply voltage manipulation to change the memory contents, leading to an operational and reusable memory or to destroy memory cell circuitry. For the case of memory data change, we present scenaria for data change to a known state and to a random state. The data change scenaria are effective against attackers who cannot detect the existence of the protection circuitry; furthermore, original data can be calculated in the case of data change to a known state, if the attacker identifies the protection circuitry and its operation. The methods that change memory contents to a random state or destroy memory cell circuitry lead to irreversible loss of the original data. However, since the known state can be used to calculate the original data.

2020-02-10
Koutroumpouchos, Nikos, Ntantogian, Christoforos, Menesidou, Sofia-Anna, Liang, Kaitai, Gouvas, Panagiotis, Xenakis, Christos, Giannetsos, Thanassis.  2019.  Secure Edge Computing with Lightweight Control-Flow Property-based Attestation. 2019 IEEE Conference on Network Softwarization (NetSoft). :84–92.

The Internet of Things (IoT) is rapidly evolving, while introducing several new challenges regarding security, resilience and operational assurance. In the face of an increasing attack landscape, it is necessary to cater for the provision of efficient mechanisms to collectively verify software- and device-integrity in order to detect run-time modifications. Towards this direction, remote attestation has been proposed as a promising defense mechanism. It allows a third party, the verifier, to ensure the integrity of a remote device, the prover. However, this family of solutions do not capture the real-time requirements of industrial IoT applications and suffer from scalability and efficiency issues. In this paper, we present a lightweight dynamic control-flow property-based attestation architecture (CFPA) that can be applied on both resource-constrained edge and cloud devices and services. It is a first step towards a new line of security mechanisms that enables the provision of control-flow attestation of only those specific, critical software components that are comparatively small, simple and limited in function, thus, allowing for a much more efficient verification. Our goal is to enhance run-time software integrity and trustworthiness with a scalable and decentralized solution eliminating the need for federated infrastructure trust. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security do not hinder the deployment of intelligent edge computing systems.