Visible to the public Biblio

Filters: Keyword is Repeated game  [Clear All Filters]
2022-08-26
Sun, Zice, Wang, Yingjie, Tong, Xiangrong, Pan, Qingxian, Liu, Wenyi, Zhang, Jiqiu.  2021.  Service Quality Loss-aware Privacy Protection Mechanism in Edge-Cloud IoTs. 2021 13th International Conference on Advanced Computational Intelligence (ICACI). :207—214.
With the continuous development of edge computing, the application scope of mobile crowdsourcing (MCS) is constantly increasing. The distributed nature of edge computing can transmit data at the edge of processing to meet the needs of low latency. The trustworthiness of the third-party platform will affect the level of privacy protection, because managers of the platform may disclose the information of workers. Anonymous servers also belong to third-party platforms. For unreal third-party platforms, this paper recommends that workers first use the localized differential privacy mechanism to interfere with the real location information, and then upload it to an anonymous server to request services, called the localized differential anonymous privacy protection mechanism (LDNP). The two privacy protection mechanisms further enhance privacy protection, but exacerbate the loss of service quality. Therefore, this paper proposes to give corresponding compensation based on the authenticity of the location information uploaded by workers, so as to encourage more workers to upload real location information. Through comparative experiments on real data, the LDNP algorithm not only protects the location privacy of workers, but also maintains the availability of data. The simulation experiment verifies the effectiveness of the incentive mechanism.
2022-04-26
Li, Jun, Zhang, Wei, Chen, Xuehong, Yang, Shuaifeng, Zhang, Xueying, Zhou, Hao, Li, Yun.  2021.  A Novel Incentive Mechanism Based on Repeated Game in Fog Computing. 2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication (CTISC). :112–119.

Fog computing is a new computing paradigm that utilizes numerous mutually cooperating terminal devices or network edge devices to provide computing, storage, and communication services. Fog computing extends cloud computing services to the edge of the network, making up for the deficiencies of cloud computing in terms of location awareness, mobility support and latency. However, fog nodes are not active enough to perform tasks, and fog nodes recruited by cloud service providers cannot provide stable and continuous resources, which limits the development of fog computing. In the process of cloud service providers using the resources in the fog nodes to provide services to users, the cloud service providers and fog nodes are selfish and committed to maximizing their own payoffs. This situation makes it easy for the fog node to work negatively during the execution of the task. Limited by the low quality of resource provided by fog nodes, the payoff of cloud service providers has been severely affected. In response to this problem, an appropriate incentive mechanism needs to be established in the fog computing environment to solve the core problems faced by both cloud service providers and fog nodes in maximizing their respective utility, in order to achieve the incentive effect. Therefore, this paper proposes an incentive model based on repeated game, and designs a trigger strategy with credible threats, and obtains the conditions for incentive consistency. Under this condition, the fog node will be forced by the deterrence of the trigger strategy to voluntarily choose the strategy of actively executing the task, so as to avoid the loss of subsequent rewards when it is found to perform the task passively. Then, using evolutionary game theory to analyze the stability of the trigger strategy, it proves the dynamic validity of the incentive consistency condition.

2021-03-29
Das, T., Eldosouky, A. R., Sengupta, S..  2020.  Think Smart, Play Dumb: Analyzing Deception in Hardware Trojan Detection Using Game Theory. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
In recent years, integrated circuits (ICs) have become significant for various industries and their security has been given greater priority, specifically in the supply chain. Budgetary constraints have compelled IC designers to offshore manufacturing to third-party companies. When the designer gets the manufactured ICs back, it is imperative to test for potential threats like hardware trojans (HT). In this paper, a novel multi-level game-theoretic framework is introduced to analyze the interactions between a malicious IC manufacturer and the tester. In particular, the game is formulated as a non-cooperative, zero-sum, repeated game using prospect theory (PT) that captures different players' rationalities under uncertainty. The repeated game is separated into a learning stage, in which the defender learns about the attacker's tendencies, and an actual game stage, where this learning is used. Experiments show great incentive for the attacker to deceive the defender about their actual rationality by "playing dumb" in the learning stage (deception). This scenario is captured using hypergame theory to model the attacker's view of the game. The optimal deception rationality of the attacker is analytically derived to maximize utility gain. For the defender, a first-step deception mitigation process is proposed to thwart the effects of deception. Simulation results show that the attacker can profit from the deception as it can successfully insert HTs in the manufactured ICs without being detected.
2020-09-28
Gao, Meng-Qi, Han, Jian-Min, Lu, Jian-Feng, Peng, Hao, Hu, Zhao-Long.  2018.  Incentive Mechanism for User Collaboration on Trajectory Privacy Preservation. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1976–1981.
Collaborative trajectory privacy preservation (CTPP) scheme is an effective method for continuous queries. However, collaborating with other users need pay some cost. Therefore, some rational and selfish users will not choose collaboration, which will result in users' privacy disclosing. To solve the problem, this paper proposes a collaboration incentive mechanism by rewarding collaborative users and punishing non-collaborative users. The paper models the interactions of users participating in CTPP as a repeated game and analysis the utility of participated users. The analytical results show that CTPP with the proposed incentive mechanism can maximize user's payoffs. Experiments show that the proposed mechanism can effectively encourage users' collaboration behavior and effectively preserve the trajectory privacy for continuous query users.
2020-02-17
Paul, Shuva, Ni, Zhen.  2019.  A Strategic Analysis of Attacker-Defender Repeated Game in Smart Grid Security. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Traditional power grid security schemes are being replaced by highly advanced and efficient smart security schemes due to the advancement in grid structure and inclusion of cyber control and monitoring tools. Smart attackers create physical, cyber, or cyber-physical attacks to gain the access of the power system and manipulate/override system status, measurements and commands. In this paper, we formulate the environment for the attacker-defender interaction in the smart power grid. We provide a strategic analysis of the attacker-defender strategic interaction using a game theoretic approach. We apply repeated game to formulate the problem, implement it in the power system, and investigate for optimal strategic behavior in terms of mixed strategies of the players. In order to define the utility or cost function for the game payoffs calculation, generation power is used. Attack-defense budget is also incorporated with the attacker-defender repeated game to reflect a more realistic scenario. The proposed game model is validated using IEEE 39 bus benchmark system. A comparison between the proposed game model and the all monitoring model is provided to validate the observations.