Visible to the public Biblio

Filters: Keyword is Artificial Intelligence (AI)  [Clear All Filters]
2023-08-23
Alja'afreh, Mohammad, Obaidat, Muath, Karime, Ali, Alouneh, Sahel.  2022.  Optimizing System-on-Chip Performance Using AI and SDN: Approaches and Challenges. 2022 Ninth International Conference on Software Defined Systems (SDS). :1—8.
The advancement of modern multimedia and data-intensive classes of applications demands the development of hardware that delivers better performance. Due to the evolution of 5G, Edge-Computing, the Internet of Things, Software-Defined networks, etc., the data produced by the devices such as sensors are increasing. A software-Defined network is a powerful paradigm that is capable of automating networking and cloud computing. Software-Defined Network has controllers, devices, and applications which produce a huge amount of data. The processing of data inside the device as well as between the devices needs a better hardware architecture with more cores to ensure speedy performance. The System-on-Chip approach alone will not be capable to handle this dense core comprised of hardware. We have to blend Network-on-Chip along with System-on-Chip to increase the potential to include more cores capable to handle more threads. Artificial Intelligence, a key enabler in next-generation devices is capable of producing a better architecture design with optimized performance. In this paper, we are discussing and endeavouring how System-on-Chip, Network-on-Chip, Software-Defined Networks, and Artificial Intelligence can be physically, logically, and contextually incorporated to deliver improved computation and networking outcomes.
2023-04-28
Ghazal, Taher M., Hasan, Mohammad Kamrul, Zitar, Raed Abu, Al-Dmour, Nidal A., Al-Sit, Waleed T., Islam, Shayla.  2022.  Cybers Security Analysis and Measurement Tools Using Machine Learning Approach. 2022 1st International Conference on AI in Cybersecurity (ICAIC). :1–4.
Artificial intelligence (AI) and machine learning (ML) have been used in transforming our environment and the way people think, behave, and make decisions during the last few decades [1]. In the last two decades everyone connected to the Internet either an enterprise or individuals has become concerned about the security of his/their computational resources. Cybersecurity is responsible for protecting hardware and software resources from cyber attacks e.g. viruses, malware, intrusion, eavesdropping. Cyber attacks either come from black hackers or cyber warfare units. Artificial intelligence (AI) and machine learning (ML) have played an important role in developing efficient cyber security tools. This paper presents Latest Cyber Security Tools Based on Machine Learning which are: Windows defender ATP, DarckTrace, Cisco Network Analytic, IBM QRader, StringSifter, Sophos intercept X, SIME, NPL, and Symantec Targeted Attack Analytic.
2022-04-25
Sunil, Ajeet, Sheth, Manav Hiren, E, Shreyas, Mohana.  2021.  Usual and Unusual Human Activity Recognition in Video using Deep Learning and Artificial Intelligence for Security Applications. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.
The main objective of Human Activity Recognition (HAR) is to detect various activities in video frames. Video surveillance is an import application for various security reasons, therefore it is essential to classify activities as usual and unusual. This paper implements the deep learning model that has the ability to classify and localize the activities detected using a Single Shot Detector (SSD) algorithm with a bounding box, which is explicitly trained to detect usual and unusual activities for security surveillance applications. Further this model can be deployed in public places to improve safety and security of individuals. The SSD model is designed and trained using transfer learning approach. Performance evaluation metrics are visualised using Tensor Board tool. This paper further discusses the challenges in real-time implementation.
2022-01-10
Li, Yanjie.  2021.  The Application Analysis of Artificial Intelligence in Computer Network Technology. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1126–1129.
In the information age, computer network technology has covered different areas of social life and involved various fields, and artificial intelligence, as an emerging technology with a very rapid development momentum in recent years, is important in promoting the development of computer network systems. This article explains the concept of artificial intelligence technology, describes the problems faced by computer networks, further analyses the advantages of artificial intelligence and the inevitability of application in network technology, and then studies the application of artificial intelligence in computer network technology.
2021-06-01
Ghouse, Mohammed, Nene, Manisha J..  2020.  Graph Neural Networks for Prevention of Leakage of Secret Data. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :994—999.
The study presents the design and development of security solution pertaining to prevention of leakage of secret data that is in transit (DIT) to be deployed in a Network Gateway, the Gateway is the link connecting the Trusted Network with the Un-trusted Network. The entire solution includes, tasks such as classification of data flowing in the network, followed by the confinement of the identified data, the confinement of the identified data is done either by tagging the data or by means of encryption, however the later form is employed to achieve confinement of classified data under secret category thereby achieving confidentiality of the same. GNN is used for achieving the categorization function and the results are found to be satisfying with less processing time. The dataset that is used is the publicly available dataset and is available in its labeled format. The final deployment will however be based on the datasets that is available to meet a particular requirement of an Organization/Institution. Any organization can prepare a customized dataset suiting its requirements and train the model. The model can then be used for meeting the DLP requirement.
2021-05-13
Jain, Harsh, Vikram, Aditya, Mohana, Kashyap, Ankit, Jain, Ayush.  2020.  Weapon Detection using Artificial Intelligence and Deep Learning for Security Applications. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :193—198.
Security is always a main concern in every domain, due to a rise in crime rate in a crowded event or suspicious lonely areas. Abnormal detection and monitoring have major applications of computer vision to tackle various problems. Due to growing demand in the protection of safety, security and personal properties, needs and deployment of video surveillance systems can recognize and interpret the scene and anomaly events play a vital role in intelligence monitoring. This paper implements automatic gun (or) weapon detection using a convolution neural network (CNN) based SSD and Faster RCNN algorithms. Proposed implementation uses two types of datasets. One dataset, which had pre-labelled images and the other one is a set of images, which were labelled manually. Results are tabulated, both algorithms achieve good accuracy, but their application in real situations can be based on the trade-off between speed and accuracy.
Feng, Xiaohua, Feng, Yunzhong, Dawam, Edward Swarlat.  2020.  Artificial Intelligence Cyber Security Strategy. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :328—333.
Nowadays, STEM (science, technology, engineering and mathematics) have never been treated so seriously before. Artificial Intelligence (AI) has played an important role currently in STEM. Under the 2020 COVID-19 pandemic crisis, coronavirus disease across over the world we are living in. Every government seek advices from scientist before making their strategic plan. Most of countries collect data from hospitals (and care home and so on in the society), carried out data analysis, using formula to make some AI models, to predict the potential development patterns, in order to make their government strategy. AI security become essential. If a security attack make the pattern wrong, the model is not a true prediction, that could result in thousands life loss. The potential consequence of this non-accurate forecast would be even worse. Therefore, take security into account during the forecast AI modelling, step-by-step data governance, will be significant. Cyber security should be applied during this kind of prediction process using AI deep learning technology and so on. Some in-depth discussion will follow.AI security impact is a principle concern in the world. It is also significant for both nature science and social science researchers to consider in the future. In particular, because many services are running on online devices, security defenses are essential. The results should have properly data governance with security. AI security strategy should be up to the top priority to influence governments and their citizens in the world. AI security will help governments' strategy makers to work reasonably balancing between technologies, socially and politics. In this paper, strategy related challenges of AI and Security will be discussed, along with suggestions AI cyber security and politics trade-off consideration from an initial planning stage to its near future further development.
2021-04-09
Lin, T., Shi, Y., Shu, N., Cheng, D., Hong, X., Song, J., Gwee, B. H..  2020.  Deep Learning-Based Image Analysis Framework for Hardware Assurance of Digital Integrated Circuits. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1—6.
We propose an Artificial Intelligence (AI)/Deep Learning (DL)-based image analysis framework for hardware assurance of digital integrated circuits (ICs). Our aim is to examine and verify various hardware information from analyzing the Scanning Electron Microscope (SEM) images of an IC. In our proposed framework, we apply DL-based methods at all essential steps of the analysis. To the best of our knowledge, this is the first such framework that makes heavy use of DL-based methods at all essential analysis steps. Further, to reduce time and effort required in model re-training, we propose and demonstrate various automated or semi-automated training data preparation methods and demonstrate the effectiveness of using synthetic data to train a model. By applying our proposed framework to analyzing a set of SEM images of a large digital IC, we prove its efficacy. Our DL-based methods are fast, accurate, robust against noise, and can automate tasks that were previously performed mainly manually. Overall, we show that DL-based methods can largely increase the level of automation in hardware assurance of digital ICs and improve its accuracy.
2021-03-29
Singh, S., Nasoz, F..  2020.  Facial Expression Recognition with Convolutional Neural Networks. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0324—0328.

Emotions are a powerful tool in communication and one way that humans show their emotions is through their facial expressions. One of the challenging and powerful tasks in social communications is facial expression recognition, as in non-verbal communication, facial expressions are key. In the field of Artificial Intelligence, Facial Expression Recognition (FER) is an active research area, with several recent studies using Convolutional Neural Networks (CNNs). In this paper, we demonstrate the classification of FER based on static images, using CNNs, without requiring any pre-processing or feature extraction tasks. The paper also illustrates techniques to improve future accuracy in this area by using pre-processing, which includes face detection and illumination correction. Feature extraction is used to extract the most prominent parts of the face, including the jaw, mouth, eyes, nose, and eyebrows. Furthermore, we also discuss the literature review and present our CNN architecture, and the challenges of using max-pooling and dropout, which eventually aided in better performance. We obtained a test accuracy of 61.7% on FER2013 in a seven-classes classification task compared to 75.2% in state-of-the-art classification.

2021-03-09
Bronzin, T., Prole, B., Stipić, A., Pap, K..  2020.  Individualization of Anonymous Identities Using Artificial Intelligence (AI). 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1058–1063.

Individualization of anonymous identities using artificial intelligence - enables innovative human-computer interaction through the personalization of communication which is, at the same time, individual and anonymous. This paper presents possible approach for individualization of anonymous identities in real time. It uses computer vision and artificial intelligence to automatically detect and recognize person's age group, gender, human body measures, proportions and other specific personal characteristics. Collected data constitutes the so-called person's biometric footprint and are linked to a unique (but still anonymous) identity that is recorded in the computer system, along with other information that make up the profile of the person. Identity anonymization can be achieved by appropriate asymmetric encryption of the biometric footprint (with no additional personal information being stored) and integrity can be ensured using blockchain technology. Data collected in this manner is GDPR compliant.

2020-02-17
Facon, Adrien, Guilley, Sylvain, Ngo, Xuan-Thuy, Perianin, Thomas.  2019.  Hardware-enabled AI for Embedded Security: A New Paradigm. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :80–84.

As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.