Biblio
Head portraits are popular in traditional painting. Automating portrait painting is challenging as the human visual system is sensitive to the slightest irregularities in human faces. Applying generic painting techniques often deforms facial structures. On the other hand portrait painting techniques are mainly designed for the graphite style and/or are based on image analogies; an example painting as well as its original unpainted version are required. This limits their domain of applicability. We present a new technique for transferring the painting from a head portrait onto another. Unlike previous work our technique only requires the example painting and is not restricted to a specific style. We impose novel spatial constraints by locally transferring the color distributions of the example painting. This better captures the painting texture and maintains the integrity of facial structures. We generate a solution through Convolutional Neural Networks and we present an extension to video. Here motion is exploited in a way to reduce temporal inconsistencies and the shower-door effect. Our approach transfers the painting style while maintaining the input photograph identity. In addition it significantly reduces facial deformations over state of the art.
In this work we design and develop Montage for real-time multi-user formation tracking and localization by off-the-shelf smartphones. Montage achieves submeter-level tracking accuracy by integrating temporal and spatial constraints from user movement vector estimation and distance measuring. In Montage we designed a suite of novel techniques to surmount a variety of challenges in real-time tracking, without infrastructure and fingerprints, and without any a priori user-specific (e.g., stride-length and phone-placement) or site-specific (e.g., digitalized map) knowledge. We implemented, deployed and evaluated Montage in both outdoor and indoor environment. Our experimental results (847 traces from 15 users) show that the stride-length estimated by Montage over all users has error within 9cm, and the moving-direction estimated by Montage is within 20°. For realtime tracking, Montage provides meter-second-level formation tracking accuracy with off-the-shelf mobile phones.