Biblio
Cyber threats directly affect the critical reliability and availability of modern Industry Control Systems (ICS) in respects of operations and processes. Where there are a variety of vulnerabilities and cyber threats, it is necessary to effectively evaluate cyber security risks, and control uncertainties of cyber environments, and quantitative evaluation can be helpful. To effectively and timely control the spread and impact produced by attacks on ICS networks, a probabilistic Multi-Attribute Vulnerability Criticality Analysis (MAVCA) model for impact estimation and prioritised remediation is presented. This offer a new approach for combining three major attributes: vulnerability severities influenced by environmental factors, the attack probabilities relative to the vulnerabilities, and functional dependencies attributed to vulnerability host components. A miniature ICS testbed evaluation illustrates the usability of the model for determining the weakest link and setting security priority in the ICS. This work can help create speedy and proactive security response. The metrics derived in this work can serve as sub-metrics inputs to a larger quantitative security metrics taxonomy; and can be integrated into the security risk assessment scheme of a larger distributed system.
The paper outlines the concept of the Digital economy, defines the role and types of intellectual resources in the context of digitalization of the economy, reviews existing approaches and methods to intellectual property valuation and analyzes drawbacks of quantitative evaluation of intellectual resources (based intellectual property valuation) related to: uncertainty, noisy data, heterogeneity of resources, nonformalizability, lack of reliable tools for measuring the parameters of intellectual resources and non-stationary development of intellectual resources. The results of the study offer the ways of further development of methods for quantitative evaluation of intellectual resources (inter alia aimed at their capitalization).