Visible to the public Biblio

Filters: Keyword is centralized SDN controller  [Clear All Filters]
2020-05-15
Chekired, Djabir Abdeldjalil, Khoukhi, Lyes.  2019.  Distributed SDN-Based C4ISR Communications: A Delay-Tolerant Network for Trusted Tactical Cloudlets. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1—7.

The next generation military environment requires a delay-tolerant network for sharing data and resources using an interoperable computerized, Command, Control, Communications, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. In this paper, we propose a new distributed SDN (Software-Defined Networks) architecture for tactical environments based on distributed cloudlets. The objective is to reduce the end-to-end delay of tactical traffic flow, and improve management capabilities, allowing flexible control and network resource allocation. The proposed SDN architecture is implemented over three layers: decentralized cloudlets layer where each cloudlet has its SDRN (Software-Defined Radio Networking) controller, decentralized MEC (Mobile Edge Computing) layer with an SDN controller for each MEC, and a centralized private cloud as a trusted third-part authority controlled by a centralized SDN controller. The experimental validations are done via relevant and realistic tactical scenarios based on strategic traffics loads, i.e., Tactical SMS (Short Message Service), UVs (Unmanned Vehicle) patrol deployment and high bite rate ISR (Intelligence, Surveillance, and Reconnaissance) video.

2020-02-18
Lin, Gengshen, Dong, Mianxiong, Ota, Kaoru, Li, Jianhua, Yang, Wu, Wu, Jun.  2019.  Security Function Virtualization Based Moving Target Defense of SDN-Enabled Smart Grid. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.

Software-defined networking (SDN) allows the smart grid to be centrally controlled and managed by decoupling the control plane from the data plane, but it also expands attack surface for attackers. Existing studies about the security of SDN-enabled smart grid (SDSG) mainly focused on static methods such as access control and identity authentication, which is vulnerable to attackers that carefully probe the system. As the attacks become more variable and complex, there is an urgent need for dynamic defense methods. In this paper, we propose a security function virtualization (SFV) based moving target defense of SDSG which makes the attack surface constantly changing. First, we design a dynamic defense mechanism by migrating virtual security function (VSF) instances as the traffic state changes. The centralized SDN controller is re-designed for global status monitoring and migration management. Moreover, we formalize the VSF instances migration problem as an integer nonlinear programming problem with multiple constraints and design a pre-migration algorithm to prevent VSF instances' resources from being exhausted. Simulation results indicate the feasibility of the proposed scheme.