Biblio
Short Message Service is now-days the most used way of communication in the electronic world. While many researches exist on the email spam detection, we haven't had the insight knowledge about the spam done within the SMS's. This might be because the frequency of spam in these short messages is quite low than the emails. This paper presents different ways of analyzing spam for SMS and a new pre-processing way to get the actual dataset of spam messages. This dataset was then used on different algorithm techniques to find the best working algorithm in terms of both accuracy and recall. Random Forest algorithm was then implemented in a real world application library written in C\# for cross platform .Net development. This library is capable of using a prebuild model for classifying a new dataset for spam and ham.
For mobile phone users, short message service (SMS) is the most commonly used text-based communication type on mobile devices. Users can interact with other users and services via SMS. For example, users can send private messages, use information services, apply for a job advertisement, conduct bank transactions, and so on. Users should be very careful when using SMS. During the sending of SMS, the message content should be aware that it can be captured and act accordingly. Based on these findings, the elderly, called as “Silent Generation” which represents 70 years or older adults, are text messaging much more than they did in the past. Therefore, they need solutions which are both simple and secure enough if there is a need to send sensitive information via SMS. In this study, we propose and develop an android application to secure text messages. The application has a simple and easy-to-use graphical user interface but provides significant security.
Text messaging is used by more people around the world than any other communications technology. As such, it presents a desirable medium for spammers. While this problem has been studied by many researchers over the years, the recent increase in legitimate bulk traffic (e.g., account verification, 2FA, etc.) has dramatically changed the mix of traffic seen in this space, reducing the effectiveness of previous spam classification efforts. This paper demonstrates the performance degradation of those detectors when used on a large-scale corpus of text messages containing both bulk and spam messages. Against our labeled dataset of text messages collected over 14 months, the precision and recall of past classifiers fall to 23.8% and 61.3% respectively. However, using our classification techniques and labeled clusters, precision and recall rise to 100% and 96.8%. We not only show that our collected dataset helps to correct many of the overtraining errors seen in previous studies, but also present insights into a number of current SMS spam campaigns.
SMS (Short Messaging Service) is a text messaging service for mobile users to exchange short text messages. It is also widely used to provide SMS-powered services (e.g., mobile banking). With the rapid deployment of all-IP 4G mobile networks, the underlying technology of SMS evolves from the legacy circuit-switched network to the IMS (IP Multimedia Subsystem) system over packet-switched network. In this work, we study the insecurity of the IMS-based SMS. We uncover its security vulnerabilities and exploit them to devise four SMS attacks: silent SMS abuse, SMS spoofing, SMS client DoS, and SMS spamming. We further discover that those SMS threats can propagate towards SMS-powered services, thereby leading to three malicious attacks: social network account hijacking, unauthorized donation, and unauthorized subscription. Our analysis reveals that the problems stem from the loose security regulations among mobile phones, carrier networks, and SMS-powered services. We finally propose remedies to the identified security issues.
Today in the world of globalization mobile communication is one of the fastest growing medium though which one sender can interact with other in short time. During the transmission of data from sender to receiver, size of data is important, since more data takes more time. But one of the limitations of sending data through mobile devices is limited use of bandwidth and number of packets transmitted. Also the security of these data is important. Hence various protocols are implemented which not only provides security to the data but also utilizes bandwidth. Here we proposed an efficient technique of sending SMS text using combination of compression and encryption. The data to be send is first encrypted using Elliptic curve Cryptographic technique, but encryption increases the size of the text data, hence compression is applied to this encrypted data so the data gets compressed and is send in short time. The Compression technique implemented here is an efficient one since it includes an algorithm which compresses the text by 99.9%, hence a great amount of bandwidth gets saved.The hybrid technique of Compression-Encryption of SMS text message is implemented for Android Operating Systems.