Visible to the public Biblio

Filters: Keyword is trustworthy nodes  [Clear All Filters]
2020-02-26
Tandon, Aditya, Srivastava, Prakash.  2019.  Trust-Based Enhanced Secure Routing against Rank and Sybil Attacks in IoT. 2019 Twelfth International Conference on Contemporary Computing (IC3). :1–7.

The Internet of Things (IoT) is an emerging technology that plays a vital role in interconnecting various objects into a network to provide desired services within its resource constrained characteristics. In IoT, the Routing Protocol for Low power and Lossy network (RPL) is the standardized proactive routing protocol that achieves satisfying resource consumption, but it does not consider the node's routing behavior for forwarding data packets. The malicious intruders exploit these loopholes for launching various forms of routing attacks. Different security mechanisms have been introduced for detecting these attacks singly. However, the launch of multiple attacks such as Rank attack and Sybil attacks simultaneously in the IoT network is one of the devastating and destructive situations. This problem can be solved by establishing secure routing with trustworthy nodes. The trustworthiness of the nodes is determined using trust evaluation methods, where the parameters considered are based on the factors that influence in detecting the attacks. In this work, Providing Routing Security using the Technique of Collective Trust (PROTECT) mechanism is introduced, and it aims to provide a secure RPL routing by simultaneously detecting both Rank and Sybil attacks in the network. The advantage of the proposed scheme is highlighted by comparing its performance with the performance of the Sec-Trust protocol in terms of detection accuracy, energy consumption, and throughput.

2020-02-24
Malik, Nisha, Nanda, Priyadarsi, He, Xiangjian, Liu, RenPing.  2019.  Trust and Reputation in Vehicular Networks: A Smart Contract-Based Approach. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :34–41.
Appending digital signatures and certificates to messages guarantee data integrity and ensure non-repudiation, but do not identify greedy authenticated nodes. Trust evolves if some reputable and trusted node verifies the node, data and evaluates the trustworthiness of the node using an accurate metric. But, even if the verifying party is a trusted centralized party, there is opacity and obscurity in computed reputation rating. The trusted party maps it with the node's identity, but how is it evaluated and what inputs derive the reputation rating remains hidden, thus concealment of transparency leads to privacy. Besides, the malevolent nodes might collude together for defamatory actions against reliable nodes, and eventually bad mouth these nodes or praise malicious nodes collaboratively. Thus, we cannot always assume the fairness of the nodes as the rating they give to any node might not be a fair one. In this paper, we propose a smart contract-based approach to update and query the reputation of nodes, stored and maintained by IPFS distributed storage. The use case particularly deals with an emergency scenario, dealing against colluding attacks. Our scheme is implemented using MATLAB simulation. The results show how smart contracts are capable of accurately identifying trustworthy nodes and record the reputation of a node transparently and immutably.